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ABSTRACT

We study complexity and approximation of queries in an
expressive query language for probabilistic databases. The
language studied supports the compositional use of confi-
dence computation. It allows for a wide range of new use
cases, such as the computation of conditional probabilities
and of selections based on predicates that involve marginal
and conditional probabilities. These features have impor-
tant applications in areas such as data cleaning and the pro-
cessing of sensor data. We establish techniques for efficiently
computing approximate query results and for estimating the
error incurred by queries. The central difficulty is due to se-
lection predicates based on approximated values, which may
lead to the unreliable selection of tuples. A database may
contain certain singularities at which approximation of pred-
icates cannot be achieved; however, the paper presents an
algorithm that provides efficient approximation otherwise.

Categories and Subject Descriptors

H.2.3  DATABASE MANAGEMENT]: Languages — Query

languages; H.2.4 [DATABASE MANAGEMENT]: Sys-
tems — Query processing

General Terms
Theory, Languages, Algorithms

1. INTRODUCTION

Uncertainty is at the root of many interesting data man-
agement problems, in areas such as data extraction, clean-
ing, and integration, data mining, sensor data management,
approximate and online query processing, and scientific data
management. Probabilistic databases bear the promise of
being useful in all of these areas.

Recently, several groups have established intense programs
of work on probabilistic databases. At the University of
Washington, the MystiQQ project aims at developing scalable
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query processing techniques, exploiting approximation tech-
niques based on Monte Carlo simulation [7, 16] and following
a database theoretic approach of studying structural frag-
ments of query languages that yield efficient evaluation [8].
A group at the University of Maryland is studying the con-
nections between probabilistic databases and previous work
in artificial intelligence, specifically Bayesian Networks and
graphical models of uncertainty [17]. A group at the Uni-
versity of Florida is currently carring their work on online
aggregation in a classical relational model over to probabilis-
tic databases [13]. The Trio project at Stanford has been
studying probabilistic databases with a focus on combining
uncertainty and data provenance management support [5]
Our own group has had a particular focus on developing
more expressive query languages for probabilistic databases
that yield new applications [4, 2], while at the same time
admitting efficient evaluation [1].

The goal of this paper is to generalize approximation ideas
[14, 7, 16] to more expressive, compositional queries in which
arbitrary query operations can be executed on top of inter-
mediate result relations that may contain computed, possi-
bly approximated, marginal and conditional probabilities.

The main new problems that arise in such a scenario are
twofold. First, while there are established procedures for
efficiently approximating the confidence in a tuple, itself a
# P-complete problem [7, 10], there is currently no such pro-
cedure for deciding predicates over approximated confidence
values. And indeed, it is easy to see that in a strict sense
such predicates cannot be approximated by a Monte Carlo
algorithm. For instance, consider the predicate “confidence
= 1/2”. If an algorithm for approximating the confidence
in a tuple seems to converge towards a value much different
from 1/2, we may conclude that with high likelihood the
predicate is false. However, we are never able to conclude
from the computation of such an algorithm that the prob-
ability is exactly 1/2, even if it is, since the random walk
will in general not exactly reach or stabilize on this number.
Thus, one major aim of this paper is to obtain an under-
standing for when predicates can be approximated and to
develop algorithms for doing so in those cases.

Second, tuple selection decisions made based on approxi-
mated queries may be wrong, leading to a scenario in which
tuples are incorrectly present in or absent from an inter-
mediate result. Thus probabilistic databases, which rep-
resent uncertainty in the form of weighted sets of possible
worlds, can in addition become unreliable. Unreliablility is
just another form of uncertainty, and indeed, previous work
on query reliability [10, 9] has used a framework essentially



identical to the tuple-independence model present in some
recent work on probabilistic databases (e.g., [7]). However,
as of yet, there is no framework for understanding prob-
abilistic databases in which approximate query operators
may lead to unreliable data. These two problems are the
main obstacles on the path towards efficient techniques for
approximating the results of more expressive queries, which
is the overall goal of this paper.

The structure and contributions of the paper are as fol-
lows. Section 2 introduces our model of probabilistic data-
bases and an expressive query algebra. We also provide an
example to demonstrate how the constructs of the language
enable new, powerful applications of probabilistic databases.

Section 3 provides an actual representation system for
probabilistic databases, U-relational databases. This rep-
resentation system is known to be succinct and complete
(i.e., any finite set of possible worlds with probabilities can
be represented) and to have the nice property that many
operations can be implemented in relational algebra on the
representation, by a simple parsimonious translation [1]. We
establish complexity bounds for the exact evaluation of gen-
eral queries with the confidence computation operation. We
give a PSPACE-completeness result for combined complex-
ity [19] and P#*F-membership and # P-hardness for data
complexity (Theorem 3.4). It is interesting that the query
language studied in the paper, which is significantly more
powerful than the language of [7, 6], is in practice not harder.

Section 4 concisely presents the Karp-Luby Monte Carlo
simulation algorithm [14] in its version for approximating
tuple confidence.

Section 5 studies the problem of deciding predicates on
approximable data values, i.e. values that are the result of
approximation and that can be further refined as needed, at
a cost. There are four main results. The first establishes
a framework for bounding the error probability of a pred-
icate using environments around the data points approxi-
mated that are homogeneous with respect to truth of the
predicate (Lemma 5.1). The second result gives a complete
solution to the problem of maximizing such environments
for the case of predicates that are Boolean combinations of
linear inequalities (Theorem 5.2), and for establishing error
bounds on predicates. The third result gives a complete so-
lution for conditions in which each approximated value is
only mentioned once (Theorem 5.5). We then get to discuss
singularities at which predicates cannot be approximated
and give an algorithm that efficiently approximates predi-
cates everywhere else (Theorem 5.8). The applicability of
the results of this section is not restricted to approximate
values obtained by the Karp-Luby algorithm or to proba-
bilistic databases, but may conceivably extend to areas such
as online aggregation [12, 13].

Section 6 uses the results of the previous section to ap-
proximate the results of queries with approximate predi-
cates. We first give a result that provides error bounds on
tuples in the results of arbitrary queries (Lemma 6.4). This
result uses a notion of data provenance to model the depen-
dence among tuples. We then show that this result yields a
polynomially-sized error bound on overall query evaluation
that can be reduced to an arbitrarily small error in polyno-
mial time (Proposition 6.6), given that the result contains no
tuples that have singularities in their provenance trails. We
strengthen this result to admit approximation for individual
tuples that do not depend on singularities (Theorem 6.7).

2. PROBABILISTIC DATABASES AND THE
ALGEBRA

A schema is a tuple (Ra,..., Rg,c), where ¢ is a function
mapping each of the relation schemas R; to either 1 or 0.
If ¢(R;) = 1, then we say that R; is by definition a com-
plete relation. We use superscripts for indexing structures;
to avoid confusion with exponentiation, we use bracketed
superscripts 1 for constants.

A probabilistic database is a finite set of structures

W = {(Ri,...,Ri,p"), ... (RT,.... R}, p™)}
of relations R} and numbers 0 < pl! <1 such that
1<i<n

and R} = --- = R if ¢(R;)) = 1. We call an element
(RY,..., Lp[i]) € W a possible world, and p!¥ its probabil-
ity. It is possible for all possible worlds to agree on further
relations than those for which ¢(-) = 1; those marked com-
plete by function c just agree by definition. The confidence
in tuple 7'is the probability

Z pli.

1<i<n: € R

Pr[i € R] =

Repairing a key of a complete relation R means to com-
pute all subset-maximal relations obtainable from R by re-
moving tuples such that a key constraint is satisfied. We will
use this as a method of constructing probabilistic databases,
with probabilities derived from relative weights attached to
the tuples of R. Formally,

repair-key o 5(R) = {(Rs,ps) | [ : 75(R) = R
st. f(5) = i implies i.A = 5}
with

Ry ={teR|fEA) =1} p;= ][]

fe‘rrg(R)

/(®)-B

ZE’ER,E’. ”:Fg-B'

Such a repair operation, apart from its usefulness for the
purpose implicit in its name, is a powerful way of construct-
ing probabilistic databases from complete relations. Exam-
ples will follow below.

When W; and W3 are two probabilistic databases, we
will use W1 ® W3 to denote their combination into a single
probabilistic database

{<R7§7p' Q> | <§7p> € Wy, <§7 Q> € WQ}' (1)

DEFINITION 2.1. Uncertainty algebra (UA) consists of the
following operations:

e The operations of relational algebra (selection o, pro-
jection 7, product X, union U, difference —, and at-
tribute renaming p), which are applied in each possible
world independently.

The semantics of binary operations 6 is

HQ(RhRm)H(W) = {<§79(R17Rm)7p> | <§7p> € W}

c(0(Ri, Rm)) := c(Ri) A c(Rm).

Unary operations can be viewed as binary operations
that take twice the same relation as input.



e An operation for computing tuple confidence,
[conf(R)[(W) := {(R, S,p) | (R,p) € W}

with S = {(f, P: Pr[f € R]) | T € poss(R)}, schema
sch(S) = sch(R) U {P} (w.lo.g., P ¢& sch(R)), and
¢(S) := 1. Here, poss(R) = |J, R'. Note that S is a
single relation with a column P for holding probability
values, rather than a probabilistic database.

e An uncertainty-introducing operation for repairing a
key in a relation. Let ¢(R) = 1 and let column B of R
contain only numerical values greater than 0. Then,

[repair-key z45(R)[(W) = W Q® repair-key ;34 5 (R).

We denote fragments of the algebra by UA[©], where ©
denotes the set of operations beyond those of relational al-
gebra that are supported. Positive UA[O] denotes UA[©O]
without the difference operation. We will also consider an
operation —. which is difference applied to relations that are
complete by c. a

We allow for selection conditions that are Boolean combi-
nations of atomic conditions (i.e., negation is permitted even
in positive UA) and for arithmetic expressions in atomic
conditions and in the arguments of m and p. For instance,
pa+B—c(R) in each world adds up the A and B values of
each tuple of R and keeps them in a new C attribute.

Note that computing possible and certain tuples of a re-
lation is redundant with conf:

poss(R) =
cert(R) =

T sch(R) (COHf(R))
T sch(R) (O'P:1 (COHf(R)))

EXAMPLE 2.2 (MOTIVATED BY [11]). We will now use
our algebra to compute tables of conditional probabilities.
Assume that we have a bag of coins of which we know that
it contains two fair coins and one double-headed coin. We
take one coin out of the bag but do not look at its two faces
to determine its type for certain. Instead we toss the coin

twice to collect evidence about its type.
We start out with the following complete database.

Coins | CoinType Count
fair 2
‘ 2headed 1
Faces | CoinType Face FProb
fair H .5
fair T .5
2headed H 1

We pick a coin from the bag and model that the coin be
either fair or double-headed.
R:= ﬂ-COinTYPe(repa‘ir'kEy(B@Count(COinS))

This results in a probabilistic database consisting of two
possible worlds,

R! | CoinType R? | CoinType
| fair | 2headed
Pr=2/3 Pr=1/3

In addition, each possible world contains the relations
Coins and Faces.

Next we perform the query

S := TCoinType,Toss,Face (T€PAIT-KEY 0 0inTy pe. Toss@FProb (
Faces x pToss({17 2})))

to model the possible outcomes of tossing the chosen coin
twice. The probabilistic database representing these repairs
consists now of eight possible worlds

(Coins, Faces, R*, 57, p' - (0.5 - 0.5)),

with the four possible relations S;

S*| CoinType Toss Face 5% | CoinType Toss Face
fair 1 H fair 1 T

fair 2 H fair 2 H
2headed 1 H 2headed 1 H
2headed 2 H 2headed 2 H

5% | CoinType Toss Face S*| CoinType Toss Face
fair 1 H fair 1 T

fair 2 T fair 2 T
2headed 1 H 2headed 1 H
2headed 2 H 2headed 2 H

For instance, the world with relations R' and S* has prob-
ability 2/3-1/4 =1/6.
The query

T:= R 7TCoinType(UTosszl/\Face:H(S)) >
TCoinType (UTOSS:I/\Facc:H (S))
computes, for each possible world, the type of the chosen

coin if both coin tosses resulted in heads in that world, for
the chosen coin type (thus the join with R). Now the query

U := WCoinType,Pl/PgaP(
pppy(conf(T)) 5 pr—.p, (cont(mo(T))))

computes the conditional probability of the chosen coin be-
ing of type CoinType given the evidence that we have seen
two tosses come out heads up. The resulting relation is

U | CoinType P
fair i—/g =1/3
2headed 23 =2/3

The prior probability of the chosen coin being fair was 2/3;
after taking the evidence from two coin tosses into account,
the posterior probability Pr[the coin is fair | both tosses
result in H] is only 1/3. |

U A[conf, repair-key] (the maximal language studied in this
paper) is a fragment of the query language implemented in
the MayBMS system [2, 3]. It also seems to be subsumed by
the query language of the Trio System [18]. However, cur-
rently no efficient query evaluation techniques are known for
this fragment.

3. COMPLEXITY OF QUERIES

To discuss complexity and evaluation of UA, we look at
U-relational databases, a representation system for proba-
bilistic databases [1].

A U-relational database defines a weighted set of possi-
ble worlds via a finite set of independent discrete random



Ur | CID LWID | CoinType W | CID LWID P
C fair fair c fair 2/3
C 2headed | 2headed c 2headed 1/3

(a) Database after the computation of R.

Us| CID LWID |CoinType Toss Face W CID LWID P
(fair, 1) H fair 1 H c fair  2/3
(fair, 1) T fair 1 T c 2headed 1/3
(fair, 2) H fair 2 H (fair,1) H .5
(fair, 2) T fair 2 T (fair,1) T .5

2headed 1 H (fair,2) H .5
2headed 2 H (fair,2) T .5

Ur |CID1 LWIDI1

CID2 L[WID2 CID3 LWID3 | CoinType

C fair
® 2headed

(fair, 1)

(fair, 2) H fair
2headed

(b) Database after the computation of T'; Ug is as in (a).

Figure 1: U-relational databases.

variables Var. That is, for each X € Var, there is a finite
set Domx such that, for each z € Domx, Pr[X = z] > 0
and 3 c b, Pr[X = 2] = 1. We use a relation of schema
W (Var, Dom, P) with (X,z,p) € W :& Pr[X = z] =p as
a complete representation of such a scenario. In addition,
a U-relational database consists of a set of representation

-,

relations Ug, for each represented relation schema R(A), of

schema Ur(D, ff) Here the D values are partial functions
f : Var — Dom, which can be represented as finite sets of
pairs of a random variable and a domain value.

A U-relational database (Urg,,...,Ur,, W) represents a
set of possible worlds not necessarily distinct by the values
of their relations but uniquely identifiable by complete func-
tions f* : Var — Dom mapping each random variable to a
suitable domain value.

A partial function f represents a set of possible worlds
with weight

pr= JI Prlx=rx) (2)

XeVar

We say that two partial functions f and g are consistent
with each other if they agree on those random variables on
which they are both defined.

Tuple ¢ is in relation R of possible world f* if there is a
tuple (f,) € Ug such that f and f* are consistent.

It was shown in [1] that any probabilistic database in the
sense of the previous section can be represented as a U-
relational database.

THEOREM 3.1  ([1]). U-relational databases are a com-
plete representation system for probabilistic databases.

ExaAMPLE 3.2. Consider again the coin tossing scenario of
Example 2.2. Figure 1(a) shows the U-relational database
after the computation of relation R. Figure 1(b) shows the
database after the computation of S and 7', representing
eight possible worlds. The final step extends the database by
a relation that is complete by definition, thus the U-relation
for it is just the relation shown in the previous example. O

U-relational databases have the nice property that the
operation of positive relational algebra, poss, and repair-
key on probabilistic databases represented as U-relational
databases can be evaluated as positive relational algebra

queries over the U-relational representations [1]. In sum-

mary, the operations translate as follows:

[R x S] MU k. DUUs.D—D,sch(R),sch(S)(
UR ™MUg.D cons. withUg.D Us)
[osR] = 04(Ur)
[rsR] = 7rD,B(R)
[[R U S]] = UrUUsg
[poss(R)] Tseh(r) (UR)-

Furthermore, S := repair-key ;4 g is translated as

Us = WDu{(A)H«sch(R)fA)fB)},sch(R)UR
with

W =W UT 3 _varsch(R)—(A0{B})— Dom,B—PUR

That is, we introduce new random variables that must be
represented in table W. (Note that the remaining operations
leave W unchanged.)

We represent the sets D as a fixed set of pairs. If all
D values are empty sets of mappings, we use zero columns
to represent D, and thus a classical complete relation is a
special case of a U-relation. Also, checking consistency can
be done by a fixed relational selection in that case, cf. [1].

In [1], it is also shown how attribute-level uncertainty can
be realized succinctly by vertical decompositioning without
additional cost.

PROPOSITION 3.3 ([1]). On U-relational databases, the
positive U Alrepair-key, poss, —c| queries are in LOGSPACE
w.r.t. data complexity.

However, computing the confidence in a tuple of an un-
certain relation of a probabilistic database represented as a
U-relational database is # P-complete [10, 7].

THEOREM 3.4. Positive U A[conf, repair-key, —c] on U-re-
lational representations is PSPACE-complete w.r.t. combined
complezity and in P*T and #P-hard w.r.t. data complexity.

Proof Sketch. The language is obviously PSPACE-hard
w.r.t. combined complexity because it contains relational
algebra as the special case where the input is a complete



database and we do not make use of the conf and repair-key
operations.

For PSPACE-membership, observe that all operations be-
sides conf can be implemented on U-relational representa-
tions by just relational algebra. The conf-operation requires
a #P-oracle to compute confidence values, but PSPACE is
closed under the application of such oracles (which them-
selves are in PSPACE).

The same query evaluation technique, using relational al-
gebra on U-relational representations on all operations be-
sides conf and using a # P-subprocedure for determining tu-
ple confidence, immediately yields the P#¥ bound for data
complexity. a

The hardness of confidence computation is due to the suc-
cinctness of the representation system. Let us consider the
following nonsuccinct representation where a probabilistic
database is a set of databases with associated weights (as
in the definition of probabilistic databases at the beginning
of Section 2) and confidence computation is an aggregation
operation across this set. Now the algebra — with confidence
computation but without repair-key (which in general cre-
ates exponentially many new worlds) — has low complexity.

PROPOSITION 3.5. UA[conf] on nonsuccinct probabilistic
databases is in LOGSPACE w.r.t. data complezity.

4. APPROXIMATING CONFIDENCE

The confidence of tuple ¢ for relation R represented in a
U-relational database is the weight of F = {f | (f,i) € Ur},

p= > ps-

f*:3AfEF frew(f)

where w(f) denotes the set of complete functions Var —
Dom consistent with partial function f.

We first briefly give a version of the Karp-Luby algorithm
[14] for computing the weight p of a disjunction F' of partial
functions f : Var — Dom.

Let M = ;. pps (see Equation 2 for the definition of
py). Assume an arbitrary fixed order for the elements of F'.

DEFINITION 4.1
following definition of random variable X;:

1. Choose an f from F with probability ps/M.

2. Choose a complete function f* € w(f) with probability
pg+/ps. That is, on each variable Y on which f is
undefined, chose alternative y with probability Pr[Y =
y] according to W.

3. If f is, among the members of F' that are consistent
with f*, the one of the smallest index, return 1, oth-
erwise return 0. O

The expected value of X; is

o b1
B[] fEZFM f*ezw(f) pr Half €w(g)}]

pre WS 17 €D
> M {g] f* €wl@)}]

fri3fer frew(f)

:%. 3

f*:3fEF frew(f)

p
Prx = M7

(KARP-LUBY ESTIMATOR). Consider the

thus X; is an unbiased estimator for p/M.
The algorithm proceeds by computing the Karp-Luby es-

timator m times and summing up, X = > X;, with
expected value E[X] = m - p/M. We approximate p thus by
p:=X-M/m.

Computing X consists of summing up the outcome of m
Bernoulli trials. For such a scenario we can use the Chernoff
bound

Pr[|X — E[X]| > ¢ E[X]] <2.¢ < B/
(cf. e.g. [15], Eq. 4.6). By substitution we get

m-p
M

Pr(lp—p| > e-p] = Pr[ T p—p| > e TP ] < 2.7

and thus, since p/M > 1/|F]|,

2

__m-e

§:=Pr[lp—p|>e-p] <2-e I

By choosing

3-|F|-log %
mi= [t
€
we get an (¢,0) fully polynomial-time randomized approxi-
mation scheme (FPRAS) for confidence computation.

PROPOSITION 4.2  (IMPLICIT IN [14]). There is a FPRAS
for confidence computation.

Let this new approximate confidence operator be denoted
by confe ;.

COROLLARY 4.3. Fix €, §, and query Q of the language
of positive UAlconf. s, repair-key]. Then, Q can be evalu-
ated in polynomial time in the size of the input U-relational
database.

Note that this statement only claims that the evaluation of
the operator tree of () is feasible in polynomial time using
randomization. We still have to study the meaning and
quality of the query results.

The previous corollary claims efficient evaluation for the
positive fragment of UA, using approximation for the diffi-
cult confidence operation. One can go a long way with posi-
tive queries, but sometimes we would like to compute condi-
tional probabilities of the form Pr[¢ | )] = Pr[¢ A ¢]/Pr[y]
where 1 is a universal constraint (e.g. a functional depen-
dency).

The following result shows that many such queries can
actually be expressed in the efficiently approximable positive
fragment. In the following, it is convenient to use relational
calculus terminology. A (slightly generalized) equality-ge-
nerating dependency (egd) is a Boolean universal formula
VZ ¢(Z) = ¢ (F) where ¢ is constructed using atoms, A, and
V and 1 is a Boolean combination of equalities.

THEOREM 4.4. If w is a formula constructed from ezis-
tential relational calculus queries and egds using A and V,
then conf(7) is expressible in positive U A[conf].

Proof Sketch. Consider a conjunction ¢ A ¢ where ¢ is ex-
istential and ¢ is an egd.

Pr(¢ A¢] = Pr[¢] — Pr[p A —1)]
and —) is existential. We express this in UA as
pPy—Py—P(pp— Py (conf(@)) b pp— p, (conf (¢ A —1)))).

This idea can be easily generalized to the Boolean combi-
nations claimed in the theorem. O



S. PREDICATES ON APPROXIMABLE VAL-

UES

In this section, we approach the following problem: Given
k (possibly different) (e, d)-approximation schemes for com-
puting approximate values p1,...,pr and a predicate ¢ on
those values, how shall we choose € to ensure that the prob-
ability of deciding ¢ incorrectly is no greater than §7 An
(e,0) approximation scheme yields approximation to within
€ times the true value — a relative interval — with probability
at least 1 — 4, i.e., Pr[|p —p| > e-p] < 4.

This is quite strong, but it does not guarantee, for any
fixed €, that the probability of the values created by ap-
proximation predicts the predicate with bounded error. We
also cannot compute € from ¢ without seeing the data first.
Thus we develop an algorithm for approximating the predi-
cate in a small number of iterations in which we look at the
data.

Let d;(¢) be an upper bound on the error ¢ for approximate

value p;, as a function of e. For instance, for the Karp-Luby

m,-e2

algorithm, &;(¢) =2 ¢ 17T is such a bound.

LEMMA 5.1. Let ¢ be a predicate over unreliable attributes
modeled as random variables pi,...,pr. Assume that the
values obtained for these are p1,...,pr. If =1 < e < 1 is
chosen such that the member points of the axis-parallel or-
thotope defined by the product of open intervals

P1 P1 ) <ﬁk Dk )
<1+e’1—e x % 1+’ 1—¢€

all agree on ¢(+), then

Pr(¢(p1,...,px) # &(P1,- .- pr)] < Z5i(6)«

Proof. If e > —1, pi < (14€)-p;s & pi > pi/(1+¢€). If e < 1,
pi > (1 —€)-pi < pi <pi/(1 —¢€). Thus, if -1 <e< 1,

Pi P

1+¢ SPis 1—€

lpi — il <e-pi &

Pr(¢(p1,...,pr) # ¢(P1,. ..
k N A~
pi ) Pi
Pr[ﬁi/:\l1+e<pl<1—e}
k
= Pr[ Ipi—ﬁilze-pi]
=1
k k
< ZPI‘“pi—ﬁHZé'ZJi] < di(e)
1

i=1 i=

We can give a slightly better bound if the random vari-
ables p1,...,pr are independent. Then,

k k
Pr\/ Ipi =il = e-p| <1-TJ(1 = 8:(0)).
i=1 i=1
The independence assumption is often realistic if the p; are
the results of an approximate computation on a reliable in-
put. For example, the results of multiple applications of the
Karp-Luby algorithm are independently distributed. a

If §;(e) is an exponentially decreasing bound (e.g., a Cher-
noff bound), then not much is lost by bounding the error by
the mass of the area outside such an orthotope.

For application in selection operations, exact attribute
values from the database can be viewed as constants for
the purpose of the previous lemma.

The goal is now to maximize parameter ¢ > 0 in order to
minimize the error. The following theorem is a solution for
the case that the condition is a linear inequality.

THEOREM 5.2. Given predicate

k
o(x1,...,T8) = (;ai-xizb)

and a point (P1,...,Pr) that satisfies ¢. Let

k k
a= ai-pi  B= lai-pil.
i=1 i=1
such that o # 0. Then,
{a/ﬁ ... b=0
€ =

max <% + 5 /B2 — 4b(a — b)) otherwise
minimizes the error bound of Lemma 5.1.

Proof. The vector (a;); is orthogonal to the hyperplane
h: Z a; - x; =b.

Let (y:); be the point at which h intersects the line that
passes through point (p;); and is orthogonal to h. Since
@(P1,...,Pr) is true, either (a;); = (yi): or (as); points from
h towards (p;):; and y; < p; iff a; > 0. If we choose € such
that the point (z;); with x; = p;/(1+sgn(a; - p;) - €) satisfies
¢, then all points in

PP ] [ e Pk
NEEED 4
[1—|—e’1—e 1+e 1—c¢
satisfy ¢ because z; is the element of the interval [p;/(1
€),pi/(1 — €)] closest to h. To maximize €, we choose (z;);
to be on h. We simplify

)DL LI
- 1+ sgn(a; - pi) - €
to
S i pi- (1—sgn(ai-fs) ) =b-(1— )« (1+¢)

and further to
a—B-e=b—b-é.

Thus, if b = 0, € = a/B. Otherwise, we take the larger of
the two solutions of the quadratic equation, i.e.,

e:max(%:t%-\/ﬁz—llb(a—b)).

Note that since 8 > a > b and « # 0, € is always defined,
a real number (i.e., the expression under the square root is
>0), and € > 0. For b = 0, this is obvious. For b # 0, since
B% > a?, B%—4dbla—b) =3 —a®+ (a—2b)%>>0.If b > 0,
then clearly € > 0. If b < 0, since o > b, —4b(a—b) > 0 and
e > 0. O

REMARK 5.3. Note that if (p;); is on the hyperplane h,
then the previous result yields e = 0. We will see later
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Figure 2: An illustration of Example 5.4. The area
to the right of the line 2z; = z2 contains the points
satisfying ¢. The mass of the area outside the rect-
angle is used as an upper bound on the error prob-
ability.

that this is a case that requires special attention. Values
€ > 1 are also possible in Theorem 5.2 and are inadmissible
in the context of the previous lemma and the Karp-Luby
algorithm. If such a value is obtained, we chose a value for
€ which is close to but smaller than 1. O

EXAMPLE 5.4. Suppose that ¢(z1,22) = (z1/z2 > ¢) and
@(p1,p2) = (P1 — ¢+ P2 > 0) is true. The error probability is
Pripi —c-p2 < 0] <1— (1 - B(e)? where

pL—c-p2

€=« = -

/8 p1+c-p2
Ifp1 =p2 =c=1/2,thend = (2,-1), ¥=(.3,.6), e=1/3
and the maximal orthotope is [3/8; 3/4]?, and the point & =
(P1/(1 4+ €),p2/(1 — €)) at which it touches the hyperplane
2-z1—x2=01is (3/8,3/4). O

In the following, we denote such an € computed for a given
predicate ¢ and approximate (p1,...,Pr) by €s(P1,...,Dk).

If ¢ is a Boolean combination of inequalities, an €, can be
computed as follows. We first push negations down using
De Morgan’s law (and the elimination of double negation)
and into the inequalities (e.g., =(f(-) < g(-)) rewrites into
f() > g()). Then, inductively,

71516)76#’(1317 s 71516))
71516)76#’(1317 s 71516))

,Pr) := min(eg (P, . - -
,Pr) := max(eg(p1, . - -

€snp (D1, - - -
€¢v¢(ﬁ17 .o

We next develop a result that gives rise to an algorithm for
maximizing e in predicates defined by general algebraic in-
equalities, with the only restriction that each variable must
only occur once. While this may seem like a serious con-
straint on expressiveness, it is really means only a small loss
of efficiency: rather than using the same unreliable value
twice in a formula, we can instead approximate the same
value twice (yielding a value with an independenty error)
and represent the two approximation results by two differ-
ent variables. Thus, the following theorem yields a general
solution for algebraic inequalities.

THEOREM 5.5. Given a constant € > 0 and a predicate

(]5(1317...,Ik) = (f(:C17...,$k) ZO)

where f is an algebraic expression built from constants, ez-
actly one occurrence of each of the variables x1,...,xk, and
the operations +,—,-, and /. Then, if each of the corner
points of the orthotope

[ 2 e [ ]

14+€e 1—e€ 14+e 1—¢€

agrees with point (p1,...,Px) on ¢, then so do all points in
the orthotope.

Proof. We prove the following stronger result.
Claim: Whenever

¢($17 s 7Ik) = ¢(:C17 s 7Ii*17x;7xi+17 s 7$k)
(wlo.g., z; < ) implies
A(x1,. . k) = AT, .o Tim1, T T 1, Th)

for all points in the orthotope such that z; < z < z, then
all the points in the orthotope agree on ¢.

Indeed, let (z1,...,2x) be an arbitrary point in the ortho-
tope. For 1 <1 <k, if

. Di Pit1 Pk =
¢(217...’Z27171+€71+X7;+1'67...’1+Xk'6) =
¢(Zl Zi—1 ﬁl ﬁl+1 ﬁk

1—e 1+ xir1-€ T 1+xk-€

for all xit1,...,xk € {+1,—1}, then

. Di Di+1 D —
¢(217...’Z27171+€71+X7;+1'67...’1+Xk'6) =

Pit1 Dk )

ZlyeeeyRi—1,yZi, yeeey
¢z ! 1+ xit1-€ 14+ xk-€

and thus (z1,...,2x) agrees on ¢ with the corner points.

An easy induction proves the claim. As (z1,...,2x) was an
arbitrary point from the orthotope, it also agrees on ¢ with
(ﬁlv s 71376)

Now consider Boolean functions
f LT ¢(a1, ey Qi—1,Tqy Ag41y - - - ,ak)

where the a1,...,ai—1,Qi+1,...,ar are constants. Obvi-
ously, if all such functions definable over predicate ¢ are
monotonic, then the precondition of the previous claim holds.

But this is obviously the case for the predicates ¢ of our
theorem: If we fix all variables but one to constants, since
each variable occurs only once in ¢, the result will be of one
of two forms, a-z; +b >0, or a/xz; + b > 0, where a and b
are constants. Obviously, both forms of Boolean functions
are monotonic. O

Thus, € can be maximized by binary search in the in-
terval (0,1), checking in each step whether the candidate
e satisfies the requirement that all the 2F (where k is fixed
with the predicate) corner points of the orthotope agree with
(P, ... Px) on 6.

There is, however, a fundamental problem with bounding
the error of predicates on unreliable attributes. In some
cases, no matter how small an € > 0 we choose, we cannot
separate the point (p1,...,Pr) enough from a boundary (a



foreach i do { X; :=0;
do {
foreach i do {
repeat |F;| times do
X; := X; + Karp-Luby-estimator(F});
mi :=m; + |Fil;  pi = Xy - Mi/mi;

m; :=0; }

if ¢(p1,...,Px) is true then
€ := max(eo, €4 (P1, ..., Pk));
else
€ := max(€eo, €~¢(P1,-..,Dk));
}
until Y. d;(e) < 6;
output ¢(p1,...,Pr), error bound min(0.5, ", di(¢))

Figure 3: Predicate approximation algorithm.

hyperplane in the case of atomic conditions that are linear
inequalities, cf. Theorem 5.2) at which the truth value of the
predicate changes; this is the case if (p1,...,pr) lies exactly
on such a boundary. We will call such boundary points
singularities.

DEFINITION 5.6  (€0-SINGULARITY). A point (p1,...,pk)
is called an ep-singularity if there is a point (z1,...,zx) such
that A\, [pi — x| < €0 p; and @(p1,...,pk) # d(z1, ..., k).

ExAMPLE 5.7. Consider predicate x1 > c¢. If p1 = ¢, we
have a singularity. As a consequence, we can in particular
never approximate a tuple certainty test (¢ = 1), no matter
how we set up €. We are able to detect cases where p1 < 1,
but we will never be able to tell for sure that p1 = 1. O

The results of this section yield a method of deciding a
predicate with probability at least § except in the case of a
singularity. We will look in detail at the case in which all our

approximable values are tuple confidences and we use the
2

Karp-Luby algorithm with error bound d;(¢) = 2 - e FIET
for approximation. Let ¢y > 0 be the smallest that we are
willing the approximation technique to go for. A naive pro-
cedure is to compute each p; using m = 3|F| - log(2/3)/e>.
Let ¢ = ¢ if ¢(p1,...,Px) is true and —¢ otherwise. If
ew(ﬁh s 7ﬁk) > €o, then ¢(ﬁ17 cee 71316) = ¢(p17 s 7pk)7 Le,
our answer for ¢ is correct, with probability at least 1 — ¢.
This does not exploit the fact that if ey (p1,...,pk) > e€o,
we can decide ¢ with sufficiently low error even earlier. The
algorithm shown in Figure 3 does.!

The next theorem asserts that this algorithm indeed ap-
proximates the predicate unless it essentially cannot be ap-
proximated because the true value that we are approximat-
ing constitutes a singularity.

THEOREM 5.8. On input of F1,...,Fy, €0, and §, if point
(p1,-..,pK) is not an eo-singularity, then the algorithm of
Figure 8 computes ¢(p1,...,pr) with error probability < 4.

Proof Sketch. Suppose that for all points (z1,...,zr) with
|pi — x| < eo-ps for all 4, ¢(p1,...,px) © ¢(x1,...,2%). Let
Y = ¢ if ¢(P1,...,Pr) is true and ¢ = —¢ otherwise.

!The Karp-Luby estimator was given in Definition 4.1. Note
that there i was a different index from the one used in the
algorithm of Figure 3.

There are two cases. (1) The algorithm terminates early,
with € = €y (p1,...,Pr) > €. Then the probability that at
least one of the p; is outside the range [p;/(1+¢€),p:/(1—€)]
is no greater than §. Thus, for the algorithm to make a
wrong decision, |p; — pi| > (€ + €) - ps, which is even less
likely. (2) The algorithm terminates and €y (p1, . .., Pr) < €o.
While we did not succeed in getting sufficient support for
deciding our predicate, we have nevertheless run the Karp-
Luby algorithm and it is assured that the probability that
|pi — Pi| > €o - p; for any 4 is true is no greater than §. But
then, by our assumption, ¢(p1,...,px) < ¢(P1,...,Px). In
both cases the error probability is bounded by ¢, thus it is
so overall. O

The algorithm keeps the individual errors d;(€) balanced,
with d1(e) =+ = di(e) = 2- 67l'€2/3, where [ is the number
of iterations of the outer loop. Let us denote

§(el) =213

The overall number of invocations of the Karp-Luby estima-
tor is I+ Y, |Fy|, with | = [3log(2k/5)/€*] and € > €o. The
running time improves by close to? a factor of (ei — eg)/ei
over the naive algorithm sketched above.

6. APPROXIMATING QUERIES

Now that we have obtained a method for approximating
predicates in those cases where they can be approximated,
we look for an approximation algorithm for UA queries.

Basically, all the building blocks for the approximate eval-
uation of UA queries are available. We can use U-relational
databases as the representation system, which yields effi-
cient techniques for evaluating the operations of positive
relational algebra. For confidence computation, we have
the Karp-Luby algorithm, and for approximating a selec-
tion predicate we have the algorithm of Figure 3. The only
piece that is missing is to know the parameters for the ap-
proximation operators that will guarantee that the overall
error bound does not exceed a given §. That is, we are look-
ing for the parameters m respectively [ of iterations that
will be required in each of the applications of an approxi-
mation operator. This yields two questions: Can bounds be
given for these parameters, and are they polynomial, yield-
ing polynomial-time query evaluation overall?

In order to approach these questions, we simplify the
query language. The goal is to distill a language that allows
for proofs that provide some insight; the language captures
the interaction of selection based on approximate values with
relational algebra operations and will disregard repair-key
operations and the construction of approximate confidence
values for the output.

We introduce a new approximate selection operation

6¢(conf€’5[A’l],.“,confé’é[gk])(R) =
O4(Py,...,Py) (PP—Py (confes(m 5 (R))) > ... b
pp—p(confes(mg (R))))-
ExXAMPLE 6.1. The query
opy/py<.5(PP—py (confes(T)) > pp— py(confe 5(mp (T))))

is now written as Geonf[cT)/cont[0]<0.5(T)- O

2Due to the fact that the truth value o(p1, ...
switch as (p1, ...

) »Pr) may
, Pr) becomes more and more exact.



We will study positive UA[6] throughout this section.

In addition to complete relations (cf. function c), we keep
track of unreliable relations. A relation is unreliable if it
was created using approximate selection or by an arbitrary
operation whose input was unreliable.

We will use @ to denote a query that, however, uses exact
implementations of the confidence operation in &; we will
use Q™ to denote the same query that uses the approximate
operator implementations as just defined, using conf. s.

To study the probability of error in positive U A[6] queries,
we require a model of unreliability. Unreliability is a form
of uncertainty, and we will model this by restating the ap-
proximate selection operation as an uncertainty-introducing
operation.

DEFINITION 6.2. An uncertain, unreliable database is a
probabilistic database of the form F ® G (see Eq. 1 of Sec-
tion 2), where F is called its uncertain and G its unreliable
component.

Approximate selection is defined by an unreliability-to-
uncertainty transformation. Starting from a (possibly unre-
liable) complete relation R, we construct an uncertain rela-
tion with the tuple independence model. Each tuple ¢ of R
is independently in the result with probability > 1 — ¢ if it
is in the result of the approximate selection, and not in the
result with probability > 1 — ¢ if it is not in the result of the
approximate selection. (We have thus completely specified
all four cases.) O

EXAMPLE 6.3. Consider a relation R that contains two
tuples t1, t2 with confidence values approximated using error
bound §. Based on the approximate values, an approximate
selection operation 64 selects t2 and drops ¢1. One might
assume that this can be modeled by an uncertain relation R’
that contains t; with probability < § and t2 with probability
> 1—4: ¢ is only an upper bound on the error probability,
not the error probability itself. Assume that the true error
probability is 0 < e < § for ¢; and § for t2. Then Prioy(R) #
] =1 — 6 + ed while conf(mp(R')) = 1 — & + 62, which is too
great and will lead to a too small error bound. This shows
that we cannot just view unreliability with bounds on error
probability as the same scenario as unreliability with error
probabilities as studied in [10]. O

We define provenance as a relationship < between (tu-
ple, query)-pairs obtained by the transitive closure of the
relation

(t.A mz(R) < (t,R)
(t,op(R)) < (t,R)
(t,RUS) < (t,R)
(t,RUS) =< (t,9)

{(r,s),RxS) < (r,R)
{(r,s),RxS) < (s,9)

Intuitively, (¢,Q) < (r, R) is true if there exists a database
in which changing the membership of r in R changes the
membership of ¢ in the result of the positive relational alge-
bra query @ on the database.

The next lemma provides bounds on the error of arbitrary
positive U A[6] expressions. Because of space limitations, we
refer to its proof sketch for the inlined definitions of Prrga
and Prg.

LEMMA 6.4. Let Q™ be a query in positive UA[G] over an
uncertain, unreliable database F @ G.

1. Prraglt € Q # 1 € Q7] < 30 (70)«(,04(qo)) Prrecls €
Qo ¥ §€ Q). Here, the queries 64(Qo) are the maz-
imal &-subexpressions of Q.

2. Pralt € 64(s,,..50)(Q) # T € Go(pr.p) (@) < k-
§’ (max(eg,€0),1) + Prraclt € Q &t € Q™).

Proof (Rough Sketch). We will make use of the fact that
an input uncertain, unreliable database F ® G has its un-
certain and unreliable component independent from each
other. The operations of relational algebra can produce tu-
ples that depend on both uncertain and unreliable data,
but the conf and approximate selection operations close the
possible worlds semantics on the side of F and their output
relations are again complete but unreliable. Unreliable data
cannot flow to the uncertain side, and we can, at the piv-
otal unreliable operations, always again produce a factored
database F ® G.3

(1) We use x[-] to map true conditions to 1 and false con-
ditions to 0. We use f € F, g,g0 € G to identify possible
worlds; go denotes the correct world in the set G repre-
senting the unreliable part of the database. 64(Qo) denotes
maximal (since < is not defined for &) J-subexpressions of
Q. Q¥ denotes the result of query @ in world (f,g).

Prrocli € Q H 1€ Q] =

Y propeX[feQM e Q]

fEF,geG
< Y prepe-
fEF,geG
| Y, FeQf™ #5e Q]
(£,@)<(5.6,4(Q0)). 5€poss(24(Qn))
< Z Prrgcls € Qo ¥ 5€ Qo

(£,Q)=(5,64(Q0)),5€poss(54(Q0))
For the definition of py, py see Equation 2.
(2) Prefconf(t € Q) # conf(t € Q7)] :=

Zpg'x[zprx[fe QT0] #

geG fEF

> proxlte Qf'g]]

feF

< Y prpgx[FeQM £ TeQM)

fEF,geG
= Prreclle Q¢ te€Q]

By the algorithm of Figure 3,

Therefore,

3This would not be so if repair-key could use unreliable rela-
tions. However, the results of this paper are immediately ap-
plicable to queries that also use repair-key operations, how-
ever never above an approximate selection operation in the
algebra tree.
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proceeding. If the error of a tuple in the output exceeds ¢,
double I and restart query evaluation. Repeat until the de-
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