
[MayBMS: A System for Managing Large Uncertain and Probabilistic Databases]

http://www.cs.cornell.edu/bigreddata/maybms/
http://maybms.sourceforge.net/

C. Koch* D. Olteanu** L. Antova*

J. Huang*/** M. Goetz* O. Kennedy*

* Cornell University ** Oxford University

The MayBMS Project

Both a research and a development project.

Research :

◮ Probabilistic DBMS are in their infancy.

◮ Foundations must be laid: query language, representation and
storage, scalable query processing, updates, concurrency control,
APIs, ...

◮ No usable systems yet, but a lot of excitement.

Goals of the development project :

◮ Build a first robust, industrial-strength probabilistic DBMS.

◮ Reuse as much database technology as possible.

◮ Establish a code base that researchers can build upon.

◮ See what users do with it: use cases, killer apps?

DBMS for Uncertain/Probabilistic Data – Applications

◮ Social network analysis, protein-protein interactions, etc.

◮ Risk management: Decision support queries, hypothetical queries

◮ (Web) information extraction, data integration, data cleaning

◮ Forecasting/prediction

◮ Managing scientific data; sensor data

◮ Lean expert systems; diagnosis; causality

◮ Crime fighting, surveillance, plagiarism detection, predicting terrorist
actions, ...

So far, probabilistic databases do not have a user base (unlike the
graphical models work in AI) – but then, no systems are available.

Probability of a triangle in a random graph of three nodes

T u v bit p

1 2 1 .5
1 2 0 .5
1 3 1 .5
1 3 0 .5
2 3 1 .5
2 3 0 .5

create table E0 as
select Q.u, Q.v
from (repair key (u,v) in T weight by p) Q
where Q.bit = 1;

8 possible worlds, one has a triangle.

create table E as ((select * from E0) union (select v as u, u as v from E0));

select conf() as triangle prob
from E e1, E e2, E e3
where e1.v = e2.u and e2.v = e3.u and e3.v = e1.u
and e1.u <> e2.u and e1.u <> e3.u and e2.u <> e3.u;

triangle prob

0.125

Hypothetical Queries: Skills Management

Suppose I buy a company and exactly one employee leaves.

Which skills do I gain for certain?

CE CID EID
Google Bob
Google Joe
Yahoo Dan
Yahoo Bill
Yahoo Fred

ES EID Skill
Bob Web
Joe Web
Dan Java
Dan Web
Bill Search
Fred Java

create table RemainingEmployees as
select CE.cid, CE.eid
from CE,

(repair key (dummy)
in (select 1 as dummy, *

from CE)) Choice
where CE.cid = Choice.cid
and CE.eid <> Choice.eid;

create table SkillGained as
select Q1.cid, Q1.skill, p1, p2, p1/p2 as p
from (select R.cid, ES.skill, conf() as p1

from RemainingEmployees R, ES
where R.eid = ES.eid
group by R.cid, ES.skill) Q1,

(select cid, conf() as p2
from RemainingEmployees
group by cid) Q2

where Q1.cid = Q2.cid;

select cid, skill from SkillGained where p=1;

CID Skill p1 p2 p
Google Web 2/5 2/5 1
Yahoo Java 3/5 3/5 1
Yahoo Web 2/5 3/5 2/3
Yahoo Search 2/5 3/5 2/3

CID Skill
Google Web
Yahoo Java

Probabilistic c-tables

CID EID φ
Google Bob x=1
Google Joe x=2
Yahoo Dan x=3
Yahoo Bill x=4
Yahoo Fred x=5

◮ Conditional tables [Imielinski, Lipski]

◮ Relational tables with variables (labeled nulls) in
which each tuple has a local (Boolean) condition.

◮ Possible worlds semantics: world given by variable
assignment; fill in variables, drop tuples that do
not satisfy condition.

◮ Evaluation of relational algebra on such tables easy.

[[R × S]] = {〈r , s, φ ∧ ψ〉 | 〈r , φ〉 ∈ R, 〈s, ψ〉 ∈ S}

[[σψ(R)]] = {〈r , φ ∧ ψ〉 | 〈r , φ〉 ∈ R}

[[R − R
′]] = {〈r , φ ∧ ¬ψ〉 | 〈r , φ〉 ∈ R, 〈r , ψ〉 ∈ R

′}

π,∪ . . . similar.

(Difference operation – here, simplifying assumption that tuples do not
contain variables.)

◮ Probabilistic c-tables: variables are random variables with some joint
distribution.

◮ Finite case: independent random variables no loss of generality!

MayBMS Query Engine Architecture

Query

query evaluation

computing probabilities,
moments, and statistical tests

query plans on c-tables

representation system

(probabilistic) c-tables

succinct representation of
joint distribution of
random variables (exchangeable)

Model of Probabilistic Databases (discrete case)

Definition

Given a relational schema Σ, a probabilistic database is a
finite set of instances over Σ (called possible worlds), where

◮ each world has a weight (called probability) between 0 and 1 and

◮ the weights of all worlds sum up to 1.

◮ A probabilistic database in our model is an uncertain relational
database.

◮ Conceptually, one of the possible worlds is “true”, but we do not
know which one (subjectivist Bayesian interpretation).

◮ This is the conceptual model; the physical representation in the
system is quite different!

The Query Language: Core Algebra

◮ The operations of relational algebra .

◮ Evaluated individually, in “parallel” in all possible worlds.

◮ An operation conf(R) for computing tuple confidence values.

◮ Computes, for each tuple that occurs in R in at least one world, the
sum of the probabilities of the worlds in which it occurs.

◮ An operation repair-key~A[@P](R) for introducing uncertainty.

◮ Conceptually, nondeterministically chooses a maximal repair of key ~A.
◮ Turns a possible world into the set of worlds consisting of all possible

maximal repairs.

◮ Here I discuss only the core algebra: The query language
implemented in MayBMS is strictly a generalization of SQL.

◮ Apart from repair-key and conf(), extensions include expectations of
sums and counts (with group-by).

Update Language

◮ Insert, update, and delete statements based on queries in the query
language presented earlier.
Example: insert into R (Q); where Q is a query in the algebra.

◮ An operation assertφ that conditions the database using a

constraint φ.
◮ Removes those worlds that violate φ.

◮ Note: Views that involve nondeterministic operations (repair-key)
are conceptually materialized.

◮ Repeated accesses return the same result.

Desiderata for a representation system

1. Expressiveness.
◮ Ability to represent query results.

2. Succinctness – Space-efficient storage.

◮ Suppose that OCR results of census forms contain two possible
readings for 0.1% of the answers.

◮ For the US census, on the order of 210,000,000 possible worlds, each
one close to one Terabyte of data.

3. Efficient real-world query processing.
◮ There is a tradeoff with succinctness.
◮ We want to do well in practice.

Representation systems: naive tables (SQL)

Census data scenario: Suppose we have to enter the information from
forms like these into a database.

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single (2) married

(3) divorced (4) widowed

(1) single (2) married

(3) divorced (4) widowed

SQL table with nulls

(TID) S N M
t1 null Smith null
t2 null Brown null

Much of the available information cannot be represented and is lost, e.g.

1. Smith’s SSN is either 185 or 785.

2. Brown’s SSN is either 185 or 186.

3. Data cleaning: No two distinct persons can have the same SSN.

U-Relational Databases

UR[SSN] V 7→ D TID SSN

x 7→ 1 t1 185
x 7→ 2 t1 785
y 7→ 1 t2 185
y 7→ 2 t2 186

UR[M] V 7→ D TID M

v 7→ 1 t1 1
v 7→ 2 t1 2
w 7→ 1 t2 1
w 7→ 2 t2 2
w 7→ 3 t2 3
w 7→ 4 t2 4

UR[N] TID N

t1 Smith
t2 Brown

W V 7→ D P
x 7→ 1 .4
x 7→ 2 .6

y 7→ 1 .7
y 7→ 2 .3

v 7→ 1 .8
v 7→ 2 .2

w 7→ 1 .25
w 7→ 2 .25
w 7→ 3 .25
w 7→ 4 .25

◮ Discrete independent (random) variables (x , y , v ,w).

◮ Representation: U-relations + table W representing distributions.
◮ The schema of each U-relation consists of

◮ a tuple id column,
◮ a set of column pairs (Vi ,Di) representing variable assignments, and
◮ a set of value columns.

Semantics of U-Relational Databases

◮ Each possible world is identified by a valuation θ that assigns one of
the possible values to each variable.

◮ The probability of the possible world is the product of weights of the
values of the variables.

◮ The value-component of a tuple of a U-relation is in a given possible
world if its variable assignments are consistent with θ.

◮ Attribute-level uncertainty through vertical decompositioning .

◮ Theorem [Antova, Jansen, K., Olteanu, ICDE 2008]: U-relations are

a complete representation system for finite probabilistic databases.

◮ Graphical models cannot express dependencies that U-relations
cannot express.

Semantics of U-Relational Databases

UR[SSN] V 7→ D TID SSN

x 7→ 1 t1 185
x 7→ 2 t1 785
y 7→ 1 t2 185
y 7→ 2 t2 186

UR[M] V 7→ D TID M

v 7→ 1 t1 1
v 7→ 2 t1 2
w 7→ 1 t2 1
w 7→ 2 t2 2
w 7→ 3 t2 3
w 7→ 4 t2 4

UR[N] TID N

t1 Smith
t2 Brown

W V 7→ D P
→ x 7→ 1 .4

x 7→ 2 .6

y 7→ 1 .7
→ y 7→ 2 .3

→ v 7→ 1 .8
v 7→ 2 .2

→ w 7→ 1 .25
w 7→ 2 .25
w 7→ 3 .25
w 7→ 4 .25

◮ We choose possible world {x 7→ 1, y 7→ 2, v 7→ 1,w 7→ 1}.

Semantics of U-Relational Databases

UR[SSN] V 7→ D TID SSN

x 7→ 1 t1 185

y 7→ 2 t2 186

UR[M] V 7→ D TID M

v 7→ 1 t1 1

w 7→ 1 t2 1

UR[N] TID N

t1 Smith
t2 Brown

W V 7→ D P
→ x 7→ 1 .4

x 7→ 2 .6

y 7→ 1 .7
→ y 7→ 2 .3

→ v 7→ 1 .8
v 7→ 2 .2

→ w 7→ 1 .25
w 7→ 2 .25
w 7→ 3 .25
w 7→ 4 .25

◮ We choose possible world {x 7→ 1, y 7→ 2, v 7→ 1,w 7→ 1}.

◮ Probability weight of this world: .4 * .3 * .8 * .25 = .024.

◮ Vertically decomposed version of the chosen possible world.

Efficient Query Evaluation: Positive relational algebra

Query evaluation under possible worlds semantics:

T q(T)

{A1, . . . ,An} {q(A1), . . . , q(An)}

rep

q

q

rep

For any positive relational algebra query q over any U-relational database
T, there exists a positive relational algebra query q of polynomial size
such that

rep(q(T)) = {q(Ai) | Ai ∈ rep(T)}.

Efficient Query Evaluation

The following operations can be mapped to relational algebra over
U-relational representations; no new joins are introduced.

[[R × S]] := πUR .VD∪US .VD→VD,sch(R),sch(S)(

UR ⊲⊳UR .VD consistentwith US .VD US)

[[σφR]] := σφ(UR)

[[π~BR]] := π
VD,~B(R)

[[R ∪ S]] := UR ∪ US

[[poss(R)]] := πsch(R)(UR).

S := repair-key~A@B
R for complete relation R is translated as

US := π(~A)→V ,((sch(R)−~A)−{B})→D,sch(R)UR

with
W := W ∪ π(~A)→Var ,(sch(R)−~A)−{B}→Dom,B→P

UR

[Antova, Jansen, K., Olteanu ICDE 2008]

Operation repair-key

Repair-key starting from a complete relation is just a projection/copying
of columns (even though we may create an exponential number of
possible worlds)!

Example: Tossing a biased coin twice.

R Toss Face FProb

1 H .4
1 T .6
2 H .4
2 T .6

S := repair-keyToss@FProb(R)

UR V D Toss Face FProb

1 H 1 H .4
1 T 1 T .6
2 H 2 H .4
2 T 2 T .6

W V D P

1 H .4
1 T .6
2 H .4
2 T .6

Query Evaluation: Example

Names of possibly married (M=2) persons: possible(πName (σM=2(S)))

US[Name] V 7→ D TID Name

x3 7→ 1 t1 Smith
x5 7→ 1 t2 Brown

US[M] V 7→ D TID M

x3 7→ 1 t1 1
x3 7→ 2 t1 2
x6 7→ 1 t2 1
x6 7→ 2 t2 2

Evaluation steps:

1. merge U-relations storing the necessary columns and rewrite:

Q
′ := πName(σM=2(US[Name] 1ψ∧φ US[M]))

ψ := (US[Name].V = US[M].V ⇒ US[Name].D = US[M].D) . . . consistency

φ := (US[Name].TID = US[M].TID) . . . reverse vertical partitioning

2. feed query to any relational query optimizer

V1 7→ D1 V2 7→ D2 TID Name M

x5 7→ 1 x6 7→ 2 t2 Brown 2

Exact Confidence Computation

Exact confidence computation is #P-hard. Two techniques implemented:

1. AI heuristic search technique [K. and Olteanu, VLDB 2008].

U V1 D1 V2 D2

x 1 x 1
x 2 y 1
x 2 z 1
u 1 v 1
u 2 u 2

W V D P
x 1 .1
x 2 .4
x 3 .5
y 1 .2
y 2 .8
z 1 .4
z 2 .6
u 1 .7
u 2 .3
v 1 .5
v 2 .5

0.7578
⊗

0.308
⊕

{x , y , z}

1.0

∅

x
.1
7→ 1

0.52
⊗

x
.4
7→ 2

0.2
⊕

{y}

1.0
∅

y
.2
7→ 1

0.4
⊕

{z}

1.0
∅

z
.4
7→ 1

0.65
⊕

{u, v}

0.5
⊕

u
.7
7→ 1

1.0
∅

v
.5
7→ 1

1.0

∅

u
.3
7→ 2

Exact Confidence Computation

Exact confidence computation is #P-hard. Two techniques implemented:

1. AI heuristic search technique [K. and Olteanu, VLDB 2008].
◮ Also: best-first search for approximate solution.
◮ Algorithm optimized for secondary storage.

2. For hierarchical queries, special PTIME techniques.
◮ Th. Hierchical queries = maximal PTIME class: dichotomy theorem

[Dalvi and Suciu 2004].
◮ Special secondary storage operator [Huang, Olteanu, K. ICDE 2009].
◮ Generalizations to obtain larger PTIME query fragment via integrity

constraints (functional dependencies).

Approximate Confidence Computation

Approximation algorithm based on MC simulation algorithm for DNF
counting [Karp, Luby, Madras].

◮ FPRAS: gives approximation in linearly many iterations in the size of
the database!

◮ Importance sampling : relative error bound in terms of size of
probability value: essential for conditional confidences, MAP, MLE!

◮ Provably optimal number of iterations via stopping rule
technique/sequential analysis [Dagum, Karp, Luby, Ross].

◮ Improvement based on [Vazirani]: fractional estimates, lower
variance. Basic estimator:

1. Sample a clause.
2. Sample a possible world for the clause.

3. Return 1
#clauses that are true in that world

.

◮ Secondary-storage implementation: doing n MC iterations in bulk
using joins etc.

◮ Generalization to continuous case .

Efficient Query Evaluation, ctd.

Properties of relational-algebra reduction for positive relational algebra:

◮ PTIME (even AC0) data complexity

◮ parsimonious reduction: query plans are hardly more complicated
than the input queries ⇒ off-the-shelf query optimizers do well.

◮ preserves the provenance of answer tuples

Remaining operations: Difference, conf, and assert.

◮ conf can be efficiently approximated by Monte Carlo simulation.

◮ Difference : In (conditional) confidence computations, universal
constraints can often be made existential (see next slides).

◮ assert is an update operation. In queries, assert can be replaced by
conf: computation of conditional probabilities.

Conditional Confidences; Rewriting Universal Queries

Census example: Find, for each TID x and SSN y , the probability

Pr
[
∃t ∈ R t.TID = x ∧ t.SSN = y
︸ ︷︷ ︸

φ(x,y)

| fd: SSN → TID
︸ ︷︷ ︸

ψ

]
,

i.e., find the probability that individual x has SSN y assuming that social
security numbers uniquely identify individuals.
Compute the conditional probability as

Pr[φ | ψ] =
Pr[φ ∧ ψ]

Pr[ψ]
=

Pr[φ] − Pr[φ ∧ ¬ψ]

1 − Pr[¬ψ]

◮ ¬ψ = ∃t, t ′ t.SSN = t ′.SSN ∧ t.TID 6= t ′.TID is existential.

◮ φ(x , y), φ(x , y) ∧ ¬ψ, and ¬ψ expressible in positive relational
algebra.

A MayBMS Run: Census Example (1)

$ create table Census_SSN_0 (tid integer, ssn integer, p float);

$ insert into Census_SSN_0 values (1, 185, .4);

$ insert into Census_SSN_0 values (1, 785, .6);

$ insert into Census_SSN_0 values (2, 185, .7);

$ insert into Census_SSN_0 values (2, 186, .3);

$ create table Census_SSN as

repair key (tid) in Census_SSN_0 weight by p;

$ select * from Census_SSN;

tid | ssn | p | _v0 | _d0 | _p0

-----+-----+-----+-----+-----+-----

1 | 185 | 0.4 | s1 | 185 | 0.4

1 | 785 | 0.6 | s1 | 785 | 0.6

2 | 185 | 0.7 | s2 | 185 | 0.7

2 | 186 | 0.3 | s2 | 186 | 0.3

A MayBMS Run: Census Example (2)

$ create table FD_Violations as

select S1.ssn

from Census_SSN S1, Census_SSN S2

where S1.tid < S2.tid and S1.ssn = S2.ssn;

/* violations of fd ssn->tid */

$ select * from FD_Violations;

ssn | _v0 | _d0 | _p0 | _v1 | _d1 | _p1

-----+-----+-----+-----+-----+-----+-----

185 | s1 | 185 | 0.4 | s2 | 185 | 0.7

A MayBMS Run: Census Example (3)

$ create table TidSsnPosterior as

select Q1.ssn, p1, p2, p3,

cast((p1-p2)/(1-p3) as real) as posterior

from (select tid, ssn, conf() as p1

from Census_SSN group by tid, ssn) Q1,

((select ssn, conf() as p2 from FD_Violations group by ssn)

union

((select ssn, 0 as p2 from Census_SSN_0)

except

(select possible ssn, 0 as p2 from FD_Violations))) Q2,

(select conf() as p3 from FD_Violations) Q3

where Q1.ssn = Q2.ssn;

$ select * from TidSsnPosterior;

tid | ssn | p1 | p2 | p3 | posterior

-----+-----+-----+------+------+-----------

1 | 185 | 0.4 | 0.28 | 0.28 | 0.166667

1 | 785 | 0.6 | 0 | 0.28 | 0.833333

2 | 185 | 0.7 | 0.28 | 0.28 | 0.583333

2 | 186 | 0.3 | 0 | 0.28 | 0.416667

A MayBMS Run: Census Example (4)

$ select * from TidSsnPosterior;

tid | ssn | p1 | p2 | p3 | posterior

-----+-----+-----+------+------+-----------

1 | 185 | 0.4 | 0.28 | 0.28 | 0.166667

1 | 785 | 0.6 | 0 | 0.28 | 0.833333

2 | 185 | 0.7 | 0.28 | 0.28 | 0.583333

2 | 186 | 0.3 | 0 | 0.28 | 0.416667

$ select tid, argmax(ssn, posterior) as map

from TidSsnPosterior

group by tid;

tid | map

-----+-----

1 | 785

2 | 185

Complexity Summary: Query Evaluation

Language Fragment Complexity Reference

On nonsuccinct representations:

RA + conf + assert + possible
+ choice-of in PTIME (SQL) [PODS 2008]

RA + possible + repair-key NP-&coNP-hard [SIGMOD 2007]

in PNP [ICDT 2009]
RA + possibleQ + repair-key =PHIER [ICDT 2009]

On U-relations:

Pos.RA + repair-key + possible in AC0 [ICDE 2008]

RA + possible co-NP-hard –

Conjunctive queries + conf #P-hard [Dalvi & Suciu]

All operations in P#P [PODS 2008]

Pos.RA + repair-key + possible

+ approx.conf + egds in PTIME [PODS 2008]

RA = relational algebra

All operations = RA + repair-key + conf + assert + possible

The MayBMS System

◮ A modification of the Postgres server backend.
◮ Compiles and runs on the same platforms as Postgres.
◮ Postgres APIs and middleware can be (readily!) used, e.g. ODBC,

JDBC, PLSQL, PHP, ...
◮ Full SQL support. Same performance as Postgres on complete data.

◮ Full support for updates, transactions and recovery.

◮ Secondary-storage versions of all techniques.

◮ Open source: http://maybms.sourceforge.net
◮ Source code of alpha version available for download now (from CVS,

not packaged yet).
◮ Upcoming release is for discrete finite distributions only; prototype

for continuous distributions exists, to be released in Spring.

Foundations: Expressive Power of Queries

◮ Reminder: Relational completeness: expressive power of relational
algebra.

◮ Relational algebra = (domain-independent) first-order logic [Codd].

◮ World-set algebra: The algebra of this talk minus “conf”, plus
“possible”, difference, and grouping worlds.

◮ Th. World-set algebra = second-order logic [K., ICDT 2009].
◮ Closed under composition (nontrivial).
◮ An expressiveness yardstick for queries on uncertain databases?

◮ Open: expressiveness of probabilistic world-set algebra.
◮ Expresses at least all of #P.
◮ Probabilistic dynamic logic?

Desiderata for a Query Language for Uncertain Data

◮ genericity – clean language design independent from representation
details.

◮ ability to transform data .

◮ ability to introduce additional uncertainty (!!!)

◮ Need for a data manipulation language (construct the probabilistic
database); compositionality.

◮ Decision support queries/hypothetical queries.
◮ Probabilistic databases: extending the hypothesis space to use

evidence .

◮ Queries that map from prior to posterior probabilities.

◮ right degree of expressive power

◮ Not too strong and not too weak.

◮ efficient query evaluation .

Arguably, the MayBMS query language satisfies these desiderata.

Conclusions

◮ MayBMS is on the way to becoming a mature probabilistic DBMS.
◮ Relevant to real users.
◮ Service to the research community: open-source and extensible.
◮ First release of the system by late fall, hopefully.

◮ Many interesting research problems left; this is currently one of the
hottest areas in data management!

◮ For more information, see the overview paper

C.Koch, “MayBMS: A System for Managing Large Uncertain and
Probabilistic Databases”, to appear as Chapter 6 of C. Aggarwal,
ed., Managing and Mining Uncertain Data, Springer, 2008.

http://www.cs.cornell.edu/bigreddata/maybms/maybms.pdf

Selected MayBMS2 Publications

◮ C. Koch, MayBMS: A System for Managing Large Uncertain and Probabilistic
Databases, to appear as Chapter 6 of C. Aggarwal, ed., Managing and Mining

Uncertain Data, Springer, 2008.

◮ L. Antova, C. Koch, and D. Olteanu. From Complete to Incomplete Information
and Back. SIGMOD 2007 .

◮ ——— & T. Jansen. Fast and Simple Relational Processing of Uncertain Data.
ICDE 2008.

◮ C. Koch. Approximating Predicates and Expressive Queries on Probabilistic
Databases. PODS 2008.

◮ C. Koch and D. Olteanu. Conditioning Probabilistic Databases. VLDB 2008.

◮ L. Antova and C. Koch. On APIs for Probabilistic Databases. MUD 2008.

◮ D. Olteanu, J. Huang, and C. Koch. Lazy versus Eager Query Plans for
Tuple-Independent Probabilistic Databases. To appear in ICDE, 2009.

◮ C. Koch. A Compositional Query Algebra for Second-Order Logic and Uncertain
Databases. To appear in ICDT, 2009.

◮ http://www.cs.cornell.edu/bigreddata/maybms/

Appendix: Query language syntax and semantics

◮ The operations are presented, where meaningful, in a probabilistic
and a nonprobabilistic version.

◮ The former can express all queries of the latter, but the latter may
be easier to understand at first.

◮ Probabilistic case: a database represents a finite set W of possible
worlds (relational databases) and their probabilities

W = {(A1, p1), . . . , (An, pn)}

s.t. p1 + · · · + pn = 1.

◮ Nonprobabilistic case: a database represents a finite set of possible
worlds.

◮ Semantically, each query operation extends the schema and thus
each possible world by a new relation.

◮ Relational algebra operations, e.g. σφ(R), prob. case:

[[σφ(R)]](W) := {(A, σφ(R
A), p) | (A, p) ∈ W}

Operation choice-of

R1 A B C
a 1 c
a 1 d
b 3 e

Pr = .5 ... (further worlds)

S := choice-ofA@B (R)

S1.1 A B C
a 1 c
a 1 d

Pr = .5 * 1/4 = 1/8

S1.2 A B C
b 3 e

Pr = .5 * 3/4 = 3/8

... (further worlds)

There must be a functional dependency R : A → B.
choice-of is expressible using repair-key:

choice-of~A@P
(R) := R ⊲⊳ repair-key∅@P(π ~A,P(R)).

Operation choice-of: Example

RA A B C
a 2 c
a 2 c ′

a′ 3 c ′′

a′ 3 c ′′′

Pr = .1
RB A B C

a′′ 0 c iv Pr = .9

choice-ofA@B(R) results in the world-set

RA1 A B C
a 2 c
a 2 c ′

Pr = 2
2+3 · .1.1 = .4

RA2 A B C
a′ 3 c ′′

a′ 3 c ′′′
Pr = 3

2+3 · .1.1 = .6

Operation choice-of

Nonprobabilistic case:

[[choice-of~A(R)]](W) :=
˘

〈A, σ~A=~a(R
A)〉 | A ∈ W, ~a ∈ π~A(RA)

¯

Probabilistic case:

◮ Syntax: choice-of~A@B
(R)

◮ R must satisfy the functional dependency R : ~A → B and the B values
must be reals ≥ 0.

◮ Semantics (W is a world-set with probabilities):

[[choice-of~A@B
(R)]](W) :=

˘`

〈A, σ~A=~a(R
A)〉,p · b/N

´

| (A, p) ∈ W, (~a, b) ∈ π~A,B(RA),

N =
X

B

(π~A,B(RA)) 6= 0, b 6= 0
¯

◮ Note: Worlds in which the B column sums up to 0 are dropped (chosen
with probability 0).

◮ The probabilities do not necessarily sum up to 1 anymore: renormalize.

Operation repair-key

Nonprobabilistic case:

[[repair-key~A(R)]](W) := {〈A, Img(f)〉 | A ∈ W,

function f : π~A(RA) → RA such that f (~a).~A = ~a}

⇒ If ~A is a key for R , then [[repair-key~A(R)]](W) = W.

Probabilistic case:
◮ B 6∈ ~A, fd R : (sch(R)\B) → B
◮ Semantics:

[[repair-key~A(R)]](W) :=
{
(〈A, Img(f)〉, p′/n) | (A, p) ∈ W,

function f : π~A(RA) → RA such that f (~a).~A = ~a,

p′ = p ·
∏

~a∈π~A(RA)

f (~a).B
∑

B(σ~A=~a(R
A))

6= 0
}

s.t.
n =

∑

(A,p)∈[[repair-key~A(R)]](W)

p.

Power of repair-key

◮ Given relation R , repair-key(R) computes as alternative worlds all
minimal repairs of a functional dependency.

◮ Power-world-set operation (w.l.o.g., A 6∈ sch(R))

pws(R) := πsch(R)(σA=1(repair-keysch(R)@P(R×ρA({0, 1})×ρP({1}))))

Each world is a subset of R , and the set of worlds created is the
powerset of R .

◮ All repairs of an arbitrary FO constraint φ:

assert[φ](pws(R)).

Operation repair-key

Example: Tossing a biased coin twice.

R Toss Face FProb

1 H .4
1 T .6
2 H .4
2 T .6

Pr = 1

S := repair-keyToss@FProb(R) results in four worlds:

S1 Toss Face FProb

1 H .4
2 H .4

S2 Toss Face FProb

1 H .4
2 T .6

S3 Toss Face FProb

1 T .6
2 H .4

S4 Toss Face FProb

1 T .6
2 T .6

p1 = 1 ·
.4

.4 + .6
·

.4

.4 + .6
= .16, p2 = p3 = .24, p4 = .36

Operation conf

◮ Returns all the tuples in the world-set and their confidences.

◮ Syntax: conf(R)

◮ sch(conf(R)) = sch(R) ∪ {Conf}
◮ Semantics:

[[conf(R)]](W) := {(〈A,Rconf(R)〉, p) | (A, p) ∈ W}

where

Rconf(R) = {〈t, p〉 | t ∈ R∗
W, p = PW(t ∈ R) > 0}

and

R∗
W =

⋃

(A,p)∈W

RA, PW(t ∈ R) =
∑

(B,p)∈W,t∈RB

p.

◮ Shortcuts: the possible/certain tuples

possible(R) := πsch(R)(σConf>0(conf(R)))

certain(R) := πsch(R)(σConf=1(conf(R)))

Operation conf: Example

RA A B

a b
b c

.3
RB A B

a b
c d

.2
RC A B

a c
c d

.5

conf: Compute, for each possible tuple, the sum of the weights of the possible
worlds in which it occurs.

conf (R) A B P

a b .5
a c .5
b c .3
c d .7

Operation assert

◮ Syntax: assertφ(R)

◮ Selects those worlds that satisfy condition φ.

◮ Semantics (nonprobabilistic case):

[[assertφ(R)]](W) := {A | A ∈ W,A � φ}

◮ Semantics (probabilistic case):

[[assertφ(R)]](W) := {(A, p/p0) | (A, p) ∈ W,A � φ}

where
p0 =

∑

(A,p)∈W,A�φ

p.

◮ R is the name of the relation passed on to the direct
superexpression, if there is one.

Example Query: Conditioning using assert

R1 TID SSN

t1 185
t2 185

R2 TID SSN

t1 185
t2 186

R3 TID SSN

t1 785
t2 185

R4 TID SSN

t1 785
t2 186

assertfd R:SSN→TID

This deletes the first of the four worlds and renormalizes the probabilities to
sum up to one.

Coin Example, #1: Prior Probabilities

We pick a coin from a bucket of one double-headed and two fair coins.

Coins Type Count
fair 2

2headed 1

Faces Type Face FProb
fair H .5
fair T .5

2headed H 1

R := πType(repair-key∅@Count(Coins))

= πType(choice-ofType@Count(Coins))

The resulting probabilistic database has two possible worlds:

R f Type
fair

Pr = 2/3
Rdh Type

2headed
Pr = 1/3

Coin Example, #2: Modeling Coin Faces and Tosses

Coins Type Count
fair 2

2headed 1

Faces Type Face FProb
fair H .5
fair T .5

2headed H 1

R f Type
fair

Pr = 2/3
Rdh Type

2headed
Pr = 1/3

S := (R ⊲⊳ Faces) × ρToss({1, 2})

S f Type Face FProb Toss
fair H .5 1
fair T .5 1
fair H .5 2
fair T .5 2

Sdh Type Face FProb Toss
2headed H 1 1
2headed H 1 2

Coin Example, #3: Extending the Hypothesis Space

S f Type Face FProb Toss
fair H .5 1
fair T .5 1
fair H .5 2
fair T .5 2

Sdh Type Face FProb Toss
2headed H 1 1
2headed H 1 2

T := πToss,Face(repair-keyToss@FProb(S))

T f .HH Toss Face
1 H
2 H

T f .HT Toss Face
1 H
2 T

Pr=1/6 Pr=1/6

T f .TH Toss Face
1 T
2 H

T f .TT Toss Face
1 T
2 T

Pr=1/6 Pr=1/6

T dh Toss Face
1 H
2 H

Pr=1/3

Coin Example, #4: Using Evidence

T f .HH Toss Face
1 H
2 H

T f .HT Toss Face
1 H
2 T

T dh Toss Face
1 H
2 H

Pr=1/6 Pr=1/6 Pr=1/3

T f .TH Toss Face
1 T
2 H

T f .TT Toss Face
1 T
2 T

Ev Toss Face
1 H
2 H

Pr=1/6 Pr=1/6

What are the posterior probabilities that a coin of type x was picked,
given the evidence Ev ?

Pr[x ∈ R | T = Ev] = Pr[x ∈ R ∧ T = Ev]/Pr[T = Ev]

C1 := conf(R × Algebra(T = Ev)); C2 := conf(Algebra(T = Ev));
Q := πType,C1.P/C2.P→P(C1 × C2)

C1 Type P
fair 1/6

2headed 1/3

C2 P
1/6+1/3 = 1/2

Q Type P

fair
1/6
1/2

= 1/3

2headed
1/3
1/2

= 2/3

Motivation: Decision Support Queries

Company Emp CID EID

Google e1
Google e2
Yahoo e3
Yahoo e4
Yahoo e5

Emp Skills EID Skill

e1 Web
e2 Web
e3 Java
e3 Web
e4 Solve problems
e5 Java

1. Suppose I choose to buy exactly one company.

2. Assume that one (key) employee leaves that company.

3. If I acquire that company, which skills can I obtain for certain?

4. Now list the possible acquisition targets if I want to guarantee to gain the
skill “Web” by the acquisition.

Result CID

Google

Motivation: Decision Support Queries

Company Emp CID EID

Google e1
Google e2
Yahoo e3
Yahoo e4
Yahoo e5

Emp Skills EID Skill

e1 Web
e2 Web
e3 Java
e3 Web
e4 Solve problems
e5 Java

◮ Suppose I choose to buy exactly one company.

U := choice ofCID(Company Emp);

U CID EID

Google e1
Google e2

U CID EID

Yahoo e3
Yahoo e4
Yahoo e5

Motivation: Decision Support Queries

Company Emp CID EID

Google e1
Google e2
Yahoo e3
Yahoo e4
Yahoo e5

Emp Skills EID Skill

e1 Web
e2 Web
e3 Java
e3 Web
e4 Solve problems
e5 Java

◮ Assume that one (key) employee leaves that company.

V := π1.CID,2.EID(choice ofEID(U) ⊲⊳1.CID=2.CID∧1.EID 6=2.EID Company Emp)

V CID EID

Google e1

V CID EID

Google e2

V CID EID

Yahoo e3
Yahoo e4

V CID EID

Yahoo e3
Yahoo e5

V CID EID

Yahoo e4
Yahoo e5

Motivation: Decision Support Queries

Company Emp CID EID

Google e1
Google e2
Yahoo e3
Yahoo e4
Yahoo e5

Emp Skills EID Skill

e1 Web
e2 Web
e3 Java
e3 Web
e4 Solve problems
e5 Java

◮ If I acquire that company, which skills can I obtain for certain ?

W := certainπCID
(πCID,Skill(V ⊲⊳ Emp Skills))

W CID Skill

Google Web

W CID Skill

Yahoo Java

Motivation: Decision Support Queries

Company Emp CID EID

Google e1
Google e2
Yahoo e3
Yahoo e4
Yahoo e5

Emp Skills EID Skill

e1 Web
e2 Web
e3 Java
e3 Web
e4 Solve problems
e5 Java

◮ Now list the possible acquisition targets if I want to guarantee to gain
the skill “Web” by the acquisition.

possible(πCID(σSkill=‘Web′(W)))

Result CID

Google

Exact Confidence Computation and Conditioning

Given a tuple t with a set of valuations S , compute conf(t) by
partitioning S

(a) into independent subsets (exploit contextual independence)

(b) by removing variables (modified Davis-Putnam)

(c) by removing valuations (compute equiv. set of pairwise mutex
valuations)

[VLDB 2008] combines (a)-(c) using cost estimation heuristics.

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

{{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}} {{u 7→ 1, v 7→ 1}, {u 7→ 2}}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

⊕

{x 7→ 1} {{x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}}

{{u 7→ 1, v 7→ 1}, {u 7→ 2}}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

⊕

∅

x
.1
7→ 1

{{x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}}

{{u 7→ 1, v 7→ 1}, {u 7→ 2}}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

⊕

∅

x
.1
7→ 1

⊗

x
.4
7→ 2

{y 7→ 1} {z 7→ 1}

{{u 7→ 1, v 7→ 1}, {u 7→ 2}}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

⊕

∅

x
.1
7→ 1

⊗

x
.4
7→ 2

⊕

∅

y
.2
7→ 1

⊕

∅

z
.4
7→ 1

⊕

{u 7→ 1, v 7→ 1} {u 7→ 2}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

⊕

∅

x
.1
7→ 1

⊗

x
.4
7→ 2

⊕

∅

y
.2
7→ 1

⊕

∅

z
.4
7→ 1

⊕

⊕

u
.7
7→ 1

{v 7→ 1}

{u 7→ 2}

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗

⊕

∅

x
.1
7→ 1

⊗

x
.4
7→ 2

⊕

∅

y
.2
7→ 1

⊕

∅

z
.4
7→ 1

⊕

⊕

u
.7
7→ 1

∅

v
.5
7→ 1

∅

u
.3
7→ 2

Confidence computation example

S = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}

⊗ 0.7578

⊕ 0.308

∅ 1.0

x
.1
7→ 1

⊗ 0.52

x
.4
7→ 2

⊕ 0.2

∅ 1.0

y
.2
7→ 1

⊕ 0.4

∅ 1.0

z
.4
7→ 1

⊕ 0.65

⊕ 0.5

u
.7
7→ 1

∅ 1.0

v
.5
7→ 1

∅ 1.0

u
.3
7→ 2

P(S) = 0.7578.

Interaction of Approximation and Selection σ

Consider the previous query in the census data scenario. What if we only
want to select those tuples for which this confidence value is at least .5?

Assuming that conf is computed by approximation, we have a very
powerful query language whose results can be very efficiently
approximated. But there is a problem.

◮ The query language is compositional: we may select tuples based on
conditions that access approximated (confidence) values.

◮ A slightly erroneous approximation result may lead to a completely
incorrect decision to keep or remove a tuple in a selection.

◮ How do errors propagate? What is the relationship between
approximation and query unreliability?

Approximating Tuple Confidence : Karp-Luby FPRAS

F : set of clauses; M =
P

f ∈F pf ; ω(f): set of possible worlds consistent with clause f .

Definition (Karp-Luby Estimator)

Consider the following definition of random variable Xi :

1. Choose an f from F with probability pf /M.

2. Choose a complete function f ∗ ∈ ω(f) with probability pf ∗/pf . That is, on each

variable C on which f is undefined, chose alternative x with probability

Pr [X = x] according to W .

3. If f is, among the members of F that are consistent with f ∗, the one of the

smallest index, return 1, otherwise return 0. 2

◮ An unbiased estimator for p
M

.

◮ Approximate p by summing up m runs of the estimator, and multiply by M/m.

◮ (ǫ, δ)-approximation, i.e.

Pr
ˆ

|p − p̂| ≥ ǫ · p | p̂
˜

≤ δ if m ≥
3 · |F | · log 2

δ

ǫ2
.

Approximating Predicates

Let Bi (ǫ) be an upper bound on the error δ of computing approximate value p̂i .

For instance, for the Karp-Luby algorithm, Bi (ǫ) = 2 · e
−

mi ·ǫ
2

3·|Fi | is such a bound.

Lemma
Let φ be a predicate over unreliable attributes modeled as random variables

p1, . . . , pn.

Assume that the values obtained for these are p̂1, . . . , p̂k .

If ǫ is chosen such that the member points of the axis-parallel orthotope

defined by the product of open intervals

i p̂1

1 + ǫ
,

p̂1

1 − ǫ

h

× · · · ×
i p̂k

1 + ǫ
,

p̂k

1 − ǫ

h

all agree on φ(·), then

Pr [φ(p1, . . . , pk) 6= φ(p̂1, . . . , p̂k)] ≤

k
X

i=1

Bi (ǫ).

Approximating Predicates

Suppose φ(x1, x2) = (x1/x2 ≥ c) and φ(p̂1, p̂2) is true. The error
probability is Pr [p1 < c · p2 | p̂1 ≥ c · p̂2] ≤ 1 − (1 − B(ǫ))2 where

ǫφ(p̂1, p̂2) =
p̂1 − c · p̂2

p̂1 + c · p̂2
.

If p̂1 = p̂2 = c = 1/2, then ǫ = 1/3 and the maximal orthotope is
[3/8; 3/4]2.

1

1/2

(p̂1, p̂2)
1/2

3/8

3/4

3/4

3/8

p1

x1 ≥ 0.5x2

p2

1

Approximating Predicates: Linear Inequalities

Theorem (PODS 2008)

Given predicate

φ(x1, . . . , xk) =
(∑

1≤i≤k

ai · xi ≥ b
)

.

Let
α =

∑

1≤i≤k

ai · p̂i β =
∑

1≤i≤k

|ai · p̂i |.

Then,

ǫ =

{
α/β . . . b = 0
β

2·b +
√

β2

4·b2 −
α
b

+ 1 . . . otherwise

minimizes the error bound of the previous Lemma.

Approximating Predicates: Variables do not occur twice

Theorem (PODS 2008)

Given a constant ǫ > 0 and a predicate

φ(x1, . . . , xk) = (f (x1, . . . , xk) ≥ 0)

where f is an algebraic expression built from constants, exactly one
occurrence of each of the variables x1, . . . , xk , and the operations +,−, ·,
and /. Then, if each of the corner points of the orthotope

[p̂1

1 + ǫ
,

p̂1

1 − ǫ

]

× · · · ×
[p̂k

1 + ǫ
,

p̂k

1 − ǫ

]

agrees with point (p̂1, . . . , p̂k) on φ, then so do all points in the
orthotope.

We can simply maximize ǫ by binary search.

Approximating Predicates: Singularities

Definition (ǫ0-singularity)

A point (p1, . . . , pk) is called an ǫ0-singularity if there is a point
(x1, . . . , xk) such that

∧

i |pi − xi | ≤ ǫ0 · pi and
φ(p1, . . . , pk) 6= φ(x1, . . . , xk).

Example

ǫ0 = 0.05; φ(y) = (y < 0.5). If p = 0.49 and x = 0.5, then φ(p),¬φ(x),
and

|p − x | = 0.01 ≤ ǫ0 · p = 0.0245.

Therefore, p is an ǫ0-singularity.

By “zooming” into the area surrounding p not closer than ǫ0, the
orthotope will contain points with disagreeing truth values for φ.

Approximating Predicates

Algorithm:
foreach i do { Xi := 0; mi := 0; }
do {

foreach i do {
repeat |Fi | times do Xi := Xi + Karp-Luby-estimator(Fi);
mi := mi + |Fi |; p̂i := Xi · Mi/mi ;

}
if φ(p̂1, . . . , p̂k) is true then ǫ := max(ǫ0, ǫφ(p̂1, . . . , p̂k));
else ǫ := max(ǫ0, ǫ¬φ(p̂1, . . . , p̂k));

}
until

P

i Bi (ǫ) ≤ δ;

output φ(p̂1, . . . , p̂k) with error ≤ min(0.5,
P

i Bi (ǫ))

Theorem (PODS 2008)

On input of F1, . . . ,Fk , ǫ0, and δ, if point (p1, . . . , pk) is not an
ǫ0-singularity, then this algorithm computes φ(p1, . . . , pk) with error
probability ≤ δ.

Example: Approximation and Selections, Pr[φ | ψ] ≥ 0.5 ?

T = πTID,S (σPφ∧ψ/Pψ≥0.5(S))

S TID S Pφ∧ψ Pψ
s1 t1 185 .12 .72
s2 t1 785 .6 .72
s3 t2 185 .42 .72
s4 t2 186 .30 .72

UT V D TID TID’ S
s1 1 s1 t1 185
s2 1 s2 t1 785
s3 1 s3 t2 185
s4 1 s4 t2 186

W V D P
s1 1 ≤ δ
s1 0 ≥ 1 − δ

s2 1 ≥ 1 − δ
s2 0 ≤ δ

s3 1 ≥ 1 − δ
s3 0 ≤ δ

s4 1 ≤ δ
s4 0 ≥ 1 − δ

◮ Selection on approximate relations yields an unreliable database.

◮ Differently from the model of Grädel, Gurevich, Hirsch, the
probabilities of the tuples are only upper- or lower-bounded.

Main Theorem

Theorem

Fix ǫ0 and a query of positive RA[conf, repair-key]. There is a PTIME
algorithm that, given δ, computes, for all tuples that do not have an
ǫ0-singularity in their provenance, their membership in the result with
error ≤ δ.

Difficulties: Operator tree contains several conf and selection operation
on a path:

◮ Computed ǫ of a higher selection depends on approximate
confidence values below.

◮ We could use ǫ0 everywhere, but that would not make use of the
fact that larger ǫ values can be derived from approximation results
an predicates.

◮ Iterative algorithm that moves up and down in the operator tree to
refine the approximations until the output tuples have overall
reliability at least 1 − δ.

◮ Only confidence computations have to be refined and results are
written into the W -table; the other operations do not have to be
recomputed.

Uncertain data generator

◮ Extend TPC-H population generator 2.6 to generate U-relational
databases.

◮ Any generated world has the sizes of relations and join selectivities
of the original TPC-H one-world case.

◮ Parameters: scale (s), uncertainty ratio (x), correlation ratio (z),
max alternatives per field (8), drop after correlation (0.25)

◮ Correlations follow a pattern obtained by chasing egds on uncertain
data [ICDE’07].

Uncertainty and storage

Total number of worlds, max. number of domain values for a variable
(Rng), and size in MB of the U-relational database for each of our
settings.

TPC-H
s z dbsize #worlds Rng dbsize #worlds Rng dbsize #worlds Rng dbsize

0.01 0.1 17 10857.076 21 82 107955.30 57 85 1079354.1 57 114

0.01 0.5 17 10523.031 71 82 104724.56 901 88 1046675.6 662 139

0.05 0.1 85 104287.23 22 389 1039913.8 33 403 10396137 65 547

0.05 0.5 85 102549.14 178 390 1023515.5 449 416 10232650 1155 672

0.10 0.1 170 108606.77 27 773 1079889.9 49 802 10793611 53 1090

0.10 0.5 170 105044.65 181 776 1046901.8 773 826 10466038 924 1339

0.50 0.1 853 1043368.0 49 3843 10400185 71 3987 103.97e+06 85 5427

0.50 0.5 853 1025528.9 214 3856 10234840 1832 4012 102.33e+06 2586 6682

1.00 0.1 1706 1087203.0 57 7683 10800997 99 7971 107.94e+06 113 11264

1.00 0.5 1706 1051290.9 993 7712 10470401 1675 8228 104.66e+06 3392 13312

x = 0.0 x = 0.001 x = 0.01 x = 0.1

◮ exponentially more succinct than representing worlds individually

◮ 108·106

worlds need 13 GBs ≈ 8 times the size of one world (1.4 GBs)

◮ case x = 0 is the DB generated by the original TPC-H (without
uncertainty)

Evaluation of positive relational algebra queries

Q1: possible (select o.orderkey, o.orderdate, o.shippriority from customer c, orders
o, lineitem l where c.mktsegment = ’BUILDING’
and c.custkey = o.custkey and o.orderkey = l.orderkey
and o.orderdate > ’1995-03-15’ and l.shipdate < ’1995-03-17’)

 0.1

 1

 10

 100

 1 0.5 0.1 0.05 0.05 0.01

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

TPC-H scale factor (ln scale)

Query 1 z 0.1

x: 0.1
x: 0.01

x: 0.001

 0.1

 1

 10

 100

 1000

 1 0.5 0.1 0.05 0.05 0.01

tim
e

in
 s

ec
 (

ln
 s

ca
le

)
TPC-H scale factor (ln scale)

Query 1 z 0.5

x: 0.1
x: 0.01

x: 0.001

◮ uncertainty varies from 0.001 to 0.1 → evaluation time up to 6
times slower

◮ correlation varies from 0.1 to 0.5 → evaluation time up to 3 times
slower

◮ scale varies from 0.01 to 1 → evaluation time up to 400 times slower
scale=1: the answer size ranges from tens of thousands to tens of
millions.

Confidence Experiments: Many Variables

 0.01

 0.1

 1

 10

 100

 1000

6.0k2.5k1.0k0.5k0.2k0.1k

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

Size of ws-set (ln scale)

Many variables (100k), few ws-descriptors, r=4, s=2

kl(e.01)
kl(e.1)
indve

Confidence Experiments: Few Variables

 0.01

 0.1

 1

 10

 100

 1000

50k25k10k5k2k1k

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

Size of ws-set (ln scale)

Few variables (100), many ws-descriptors, r=4(2), s=4

kl(e.01)
indve

kl(e.1)
ve

Confidence Experiments: Easy-hard-easy Pattern

 0.01

 0.1

 1

 10

 100

 1000

 10000

5000825500200905

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

Size of ws-set (ln scale)

Number of variables close to ws-set size, 70 variables, r=4, s=4

indve(ymax)
indve(median)

kl(e.001)
indve(ymin)

Confidence Experiments: Heuristics

 0.01

 0.1

 1

 10

 100

100050020010050

tim
e

in
 s

ec
 (

ln
 s

ca
le

)

Size of ws-set (ln scale)

INDVE heuristics; 100K variables, r=4(2), s=4

minmax
minlog

	First Slide
	Introduction
	Motivating Examples
	Architecture

	Query Language
	Operations
	Updates

	Representation System
	Desiderata
	SQL Tables with NULLs
	U-Relations

	Efficient Query Evaluation
	PTIME Operations
	Confidence Computation Algorithms
	Avoiding Exponential-time Problems
	A MayBMS Run
	Complexity Summary

	The MayBMS System
	Query Language Foundations
	Conclusions
	MayBMS2 Publications
	Appendix
	Query Language Definition
	Coin Example
	Hypothetical Query Example
	Exact Confidence Computation

	Query Approximation
	Approximating Predicates
	Approximating Compositional Queries
	Experiments

