
MayBMS – A System for Managing Large Amounts of Incomplete
Information

Christoph Koch
Universität des Saarlandes

koch@infosys.uni-sb.de

Joint work with Lyublena Antova and Dan Olteanu

Incomplete information

◮ Databases with missing information

◮ Important in many data management applications:
◮ data integration, data exchange
◮ data cleaning and warehousing
◮ Web information extraction
◮ scientific databases
◮ computational linguistics
◮ management information systems, expert systems ...

◮ Current database management systems do not support these
applications.

◮ Knowledge representation (AI) has come up with very interesting
formalisms such as Answer Set Programming but these do not scale
to these applications.

Overview of this talk

◮ Motivation. Possible worlds semantics.

◮ World-set SQL

◮ The MayBMS representation system: World-set Decompositions
(WSDs).

◮ Leverage existing relational DBMS techniques.

◮ Efficient query processing on WSDs.

◮ Minimizing representations.

◮ Foundations: Expressiveness and complexity, representing infinite
world-sets.

◮ Experiments with MayBMS.

◮ Conclusions and outlook.

Incomplete information in SQL databases: null values

Consider the relational database table

R A

1

What does the following query produce?

select ’yes’ from R where R.A = R.A;

Incomplete information in SQL databases: null values

Consider the relational database table

R A

1

What does the following query produce?

select ’yes’ from R where R.A = R.A;

◮ Answer: one tuple: ’yes’

◮ Same result if we replace 1 by a different value.

Incomplete information in SQL databases: null values

Consider the relational database table with a null value (“don’t know”)

R A

null

What does the following query produce?

select ’yes’ from R where R.A = R.A;

Incomplete information in SQL databases: null values

Consider the relational database table with a null value (“don’t know”)

R A

null

What does the following query produce?

select ’yes’ from R where R.A = R.A;

◮ Answer: no tuples

◮ Explanation: 3-valued condition semantics (true, false, unknown).

Discussion

The semantics of SQL is unintuitive.

What we really want is a possible worlds semantics in which we can
reason for query

select ’yes’ from R where R.A = R.A;

as follows.

◮ No matter what value the null takes, there is a tuple and the
condition is true.

◮ Thus ’yes’ is a certain answer : it should be returned in all possible
worlds.

◮ Return ‘yes’.

Problem: complexity

◮ A relational table with simple null values as in SQL but with a
possible worlds semantics is called a naive table .

◮ Unfortunately,

Theorem (Abiteboul, Kanellakis, Grahne). There is a fixed (and
even rather simple) SQL query that is NP-hard to evaluate on naive
tables.

◮ Reason: Naive tables are a very succinct representation of (infinitely)
many possible worlds.

◮ Note: SQL has PTIME query evaluation (if queries are fixed).

◮ Nevertheless, in many applications we need possible worlds.

Census data scenario

Suppose we have to enter the information from forms like these into a
database.

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single (2) married

(3) divorced (4) widowed

(1) single (2) married

(3) divorced (4) widowed

◮ What is the marital status of the first resp. the second person?

◮ What are the social security numbers? 185? 186? 785?

Representation systems: naive tables (SQL)

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single (2) married

(3) divorced (4) widowed

(1) single (2) married

(3) divorced (4) widowed

(TID) S N M
t1 null Smith null
t2 null Brown null

Much of the available information cannot be represented and is lost, e.g.

1. Smith’s SSN is either 185 or 785.

2. Brown’s SSN is either 185 or 186.

3. Data cleaning: No two distinct persons can have the same SSN: The
case that Smith and Brown both have SSN 185 is excluded.

Motivation: Decision Support Queries

Company Emp CID EID

Google e1
Google e2
Yahoo e3
Yahoo e4
Yahoo e5

Emp Skills EID Skill

e1 Web
e2 Web
e3 Java
e3 Web
e4 Solve problems
e5 Java

1. Suppose I choose to buy exactly one company.

2. Assume that one (key) employee leaves that company.

3. If I acquire that company, which skills can I obtain for certain?

4. Now list the possible acquisition targets if I want to guarantee to gain the
skill “Web” by the acquisition.

Result CID

Google

Motivation: Decision Support Queries

Company Emp CID EID

Google e1
Google e2
Yahoo e3
Yahoo e4
Yahoo e5

Emp Skills EID Skill

e1 Web
e2 Web
e3 Java
e3 Web
e4 Solve problems
e5 Java

◮ Suppose I choose to buy exactly one company.

U←
select *
from Company Emp
choice of CID;

U CID EID

Google e1
Google e2

U CID EID

Yahoo e3
Yahoo e4
Yahoo e5

Motivation: Decision Support Queries

Company Emp CID EID

Google e1
Google e2
Yahoo e3
Yahoo e4
Yahoo e5

Emp Skills EID Skill

e1 Web
e2 Web
e3 Java
e3 Web
e4 Solve problems
e5 Java

◮ Assume that one (key) employee leaves that company.

V←
select R1.CID, R2.EID
from (select * from U choice of EID) R1, Company Emp R2
where R1.CID = R2.CID and R1.EID != R2.EID;

V CID EID

Google e1

V CID EID

Google e2

V CID EID

Yahoo e3
Yahoo e4

V CID EID

Yahoo e3
Yahoo e5

V CID EID

Yahoo e4
Yahoo e5

Motivation: Decision Support Queries

Company Emp CID EID

Google e1
Google e2
Yahoo e3
Yahoo e4
Yahoo e5

Emp Skills EID Skill

e1 Web
e2 Web
e3 Java
e3 Web
e4 Solve problems
e5 Java

◮ If I acquire that company, which skills can I obtain for certain ?

W←

select certain CID, Skill
from V, Emp Skill
where V.EID = Emp Skill.EID
group worlds by (select CID from V);

W CID Skill

Google Web

W CID Skill

Yahoo Java

Motivation: Decision Support Queries

Company Emp CID EID

Google e1
Google e2
Yahoo e3
Yahoo e4
Yahoo e5

Emp Skills EID Skill

e1 Web
e2 Web
e3 Java
e3 Web
e4 Solve problems
e5 Java

◮ Now list the possible acquisition targets if I want to guarantee to gain
the skill “Web” by the acquisition.

select possible CID
from W
where Skill = ‘Web’;

Result CID

Google

Beyond SQL: World-set SQL

◮ The language of the Google/Yahoo example.

◮ Syntax of select queries:

select [(possible|certain)
[in alternatives]] attribute or aggregate+

from query+
where condition

[group by attribute+
[having attribute or aggregate+]]
[choice of attribute+]
[group worlds by query];

◮ Intuition: Queries execute within each world individually but may
look outside if necessary.

◮ This viewpoint is important for getting a clean semantics to views
and query-based updates.

Properties of World-set SQL

◮ World-set SQL: The language of the Google/Yahoo example.

◮ Goal: A language that is a natural analog to SQL, on world-sets.
◮ Representation-independent.
◮ Not too strong and not too weak.

◮ Conservativity . Theorem (Antova, K., Olteanu). Each

single-world to single-world query in World-set SQL is equivalent to
an SQL query.

◮ Thus W-S SQL is not too strong.

◮ Efficient reductions . Each 1W/1W query can be efficiently
translated to SQL. (+ linear output size)

◮ Practical evaluation technique.
◮ Translation is interesting, e.g., generalizations of relational division

for translating certain [... group worlds by].

Main Goals of the MayBMS Project

◮ Create a scalable DBMS for supporting incomplete information
(world-sets).

◮ Scalability should be comparable to current relational databases.

◮ Develop storage and query processing techniques.

◮ Design a query and data manipulation language (like SQL for
RDBMS) for world-set databases.

◮ The queries in the previous example were phrased in our language.

◮ Enable and deploy in novel data management applications.

◮ Representation system: way of storing sets of worlds (on disk).

◮ Our approach: World-set Decompositions.

◮ We will use the census data scenario as a guiding example.

Desiderata for a representation system

1. Succinctness/Space-efficient storage .

◮ Usually there are many rather independent local alternatives, which
multiply up to a very large number of worlds.

◮ Suppose the US census, before cleaning, contains two possible
readings for 0.1% of the answers. Then that is on the order of
210,000,000 worlds, each one close to one Terabyte of data.

◮ But then, not quite independent, or otherwise representation would
not be so difficult.

2. Efficient real-world query processing . There is a tradeoff with
succinctness and a lower bound from naive tables. We want to do
well in practice.

3. Expressiveness/Representability . Ability to represent all query

results.

World-set tables

◮ Tabular representation of set of possible worlds. Uses tuple ids.

◮ Columns: Fields of one world. Rows: Alternative worlds.

t1.S t1.N t1.M t2.S t2.N t2.M

(World #1) 185 Smith 1 186 Brown 3
(World #2) 185 Smith 1 ⊥ ⊥ ⊥
(World #3) 185 Smith 2 186 Brown 1

◮ Pad with null values (“bombs”) to get uniform arity if not all worlds
have the same number of tuples in each relation.

◮ This represents the world-set

World #1: World #3:

(TID) S N M

t1 185 Smith 1
t2 186 Brown 3

(TID) S N M

t1 185 Smith 2
t2 186 Brown 1

World #2:

(TID) S N M

t1 185 Smith 1

World-set decompositions (WSDs)

World-set table:

t1.S t1.N t1.M t2.S t2.N t2.M

185 Smith 1 186 Brown 1
185 Smith 1 186 Brown 2
185 Smith 1 186 Brown 3
185 Smith 1 186 Brown 4
185 Smith 2 186 Brown 1

...
785 Smith 2 186 Brown 4

WSD: Product decomposition of world-set table.

t1.S

185
785

×
t1.N

Smith
×

t1.M

1
2

×
t2.S

185
186

×
t2.N

Brown
×

t2.M

1
2
3
4

To reverse, compute product of the component relations.

World-set decompositions (WSDs): Bombs

World #1:
(TID) A B

t1 a c

World #2:
(TID) A B

t1 b c

World #3:
(TID) A B

WSD representation:

t1.A t1.B

a c
b c
⊥ ⊥

⇒

t1.A

a
b
×

t1.B

c
⊥

=

t1.A t1.B

a c
b c
a ⊥
b ⊥

=

t1.A t1.B

a c
b c
⊥ ⊥
⊥ ⊥

Data Cleaning on WSDs

Consider WSD

t1.S

185
785

×
t1.N

Smith
×

t1.M

1
2

×
t2.S

185
186

×
t2.N

Brown
×

t2.M

1
2
3
4

We clean this dataset – no two persons can have the same SSN.

t1.S t2.S

185 186
785 185
785 186

×
t1.N

Smith
×

t1.M

1
2

×
t2.N

Brown
×

t2.M

1
2
3
4

Note: you cannot represent this world-set using single attribute
components (“or-sets”).

Queries: Relational selection (select * from R where C=7)

Query P := σC=7(R) on WSD

R.t1.A

1
2

×

R.t1.B R.t1.C R.t2.B

1 0 3
2 7 4

×

R.t2.A

4
5

×
R.t2.C

0

1. Replace all values in R.ti .C fields that are different from 7 by bombs.

2. Propagate bombs to all P.ti .B, i.e., other fields of the same tuple,
within the same component. Result:

P.t1.A

1
2

×

P.t1.B P.t1.C P.t2.B

⊥ ⊥ 3

2 7 4

×

P.t2.A

4
5

×
P.t2.C

⊥

3. Remove tuples that are “mined” in all worlds. Result:

P.t1.A

1
2

×

P.t1.B P.t1.C

⊥ ⊥
2 7

Note: Join conditions A = B require the merging of the components of ti .A

and ti .B if they are different.

Queries: Relational projection (select A from R)

Given WSD

R.t1.A
a

×
R.t2.A

b
×

R.t1.B R.t2.B
c ⊥
⊥ d

representing world-set

(TID) A B
t1 a c

(TID) A B
t2 b d

The projection πA(R) is

P.t1.A P.t2.A
a ⊥
⊥ b

Although of low complexity, the algorithm is rather involved.

Queries: Relational product (select * from R, S)

WSDs are product decompositions: no need to merge components .

R.t1.A
1
2

×
R.t1.B R.t2.A

3 5
4 6

×
R.t2.B

7
8

×
S.t1.C

a
b

×

S.t1.D S.t2.C
c e
d f

×
S.t2.D

g
h

(a) WSD of two relations R and S .

t11.A t12.A
1 1
2 2

×
t11.B t12.B t21.A t22.A

3 3 5 5
4 4 6 6

×
t21.B t22.B

7 7
8 8

×

t11.C t21.C
a a
b b

×
t11.D t21.D t12.C t22.C

c c e e
d d f f

×
t12.D t22.D

g g
h h

(b) WSD of their product R × S .

Minimizing WSDs

◮ Given a WSD, find an as small as possible equivalent representation
for it.

◮ If we think of WSDs simply as product-decompositions, there is
actually a unique minimal equivalent representation as a WSD: the
prime factorization .

◮ This is closely related to work by Brayton on factorizing algebraic
functions.

◮ Theorem (Antova, K., Olteanu). The primes can be computed

efficiently in time O(n log n) on disk .

◮ In linear time in main memory if we assume the arity of the input
relation fixed.

◮ But WSDs have a richer structure: We will see later that the primes
do not necessarily provide a minimal decomposition.

Relation and Corresponding Trie

1 2 3 4 5 6 7 8

a a a a b b b c
a a a a b b c c
a a b a b b a c
a b a a b c b a
a b a a b c c a
a b b a b c a a
b a a c b b b c
b a a c b b c c
b a a c c b b c
b a a c c b c c
b a b c b b a c
b a b c c b a c
b b a c b c b a
b b a c b c c a
b b a c c c b a
b b a c c c c a
b b b c b c a a
b b b c c c a a

b

a

a

a a b b
b c

c c

b a b b a c

b

a a b c
b a

c a

b a b c a a

b

a

a c

b b
b c

c c

c b
b c

c c

b c
b b a c

c b a c

a c

b c
b a

c a

c c
b a

b

a

a

a a b b
b c

c c

b a b b a c

b

a a b c
b a

c a

b a b c a a

a

a c

b b
b c

c c

c b
b c

c c

b c
b b a c

b

a

a

a a b b

7 8

b

c
× c

b a b b a c

b

a a b c
b a

c a

b a b c a a

a

a c

b b
b c

c c

c b
b c

c c

b

a

a

a a b

6 7 8

b ×
b

c
× c

b a b b a c

b

a a b c
b a

c a

b a b c a a

a

a c

b b
b c

c c

c b
b c

c c

b

a

a

3 4 5 6 7 8

a × a × b × b ×
b

c
× c

3 4 5 6 7 8

b × a × b × b × a × c

b

a a b c
b a

c a

b a b c a a

a

a c

b b
b c

c c

c b
b c

c c

b

a

2 4 5 6 8

a ×

3 7

a ×
b

c

b × a

× a × b × b × c

b

a a b c
b a

c a

b a b c a a

a

a c

b b
b c

c c

c b
b c

c c

b b a c

b

a

2 4 5 6 8

a ×

3 7

a ×
b

c

b × a

× a × b × b × c

2 4 5 6 8

b ×

3 7

a ×
b

c

b × a

× a × b × c × a

a

a c

b b
b c

c c

c b
b c

c c

b b a c

b

1 4 5

a ×
2 6 8
a × b × c

b × c × a

×

3 7

a ×
b

c

b × a

× a × b

b

a

a c

b b
b c

c c

c b
b c

c c

b c
b b a c

c b a c

a c

b c
b a

c a

c c
b a

b

1 4 5

a ×
2 6 8
a × b × c

b × c × a

×

3 7

a ×
b

c

b × a

× a × b

b

a

3 4 5 6 7 8

a × c ×
b

c
× b ×

b

c
× c

b c
b b a c

c b a c

b

a c

b c
b a

c a

c c
b a

c a

b

1 4 5

a ×
2 6 8
a × b × c

b × c × a

×

3 7

a ×
b

c

b × a

× a × b

b

a

3 4 5 6 7 8

a × c ×
b

c
× b ×

b

c
× c

3 4 5 6 7 8

b × c ×
b

c
× b × a × c

b

a c

b c
b a

c a

c c
b a

c a

b

1 4 5

a ×
2 6 8
a × b × c

b × c × a

×

3 7

a ×
b

c

b × a

× a × b

b

2 4 5 6 8

a ×

3 7

a ×
b

c

b × a

× c ×
b

c
× b × c

b

a c

b c
b a

c a

c c
b a

c a

b c
b c a a

c c a a

b

1 4 5

a ×
2 6 8
a × b × c

b × c × a

×

3 7

a ×
b

c

b × a

× a × b

b

2 4 5 6 8

a ×

3 7

a ×
b

c

b × a

× c ×
b

c
× b × c

2 4 5 6 8

b ×

3 7

a ×
b

c

b × a

× c ×
b

c
× c × a

b

1 4 5

a ×
2 6 8
a × b × c

b × c × a

×

3 7

a ×
b

c

b × a

× a × b

1 4 5

b ×
2 6 8
a × b × c

b × c × a

×

3 7

a ×
b

c

b × a

× c ×
b

c

1 4 5
a × a × b

b × c ×
b

c

×
2 6 8
a × b × c

b × c × a

×

3 7

a ×
b

c

b × a

1 4 5
a × a × b

b × c ×
b

c

×
2 6 8
a × b × c

b × c × a

×

3 7

a ×
b

c

b × a

Decomposition result:

1 4 5
a a b

b c b

b c c

×
2 6 8
a b c

b c a

×

3 7
a b

a c

b a

Product-Union Decompositions

We can think of

A B

a ×
b

c

b × c

as a decomposition with respect to the operations product × and union
∪ of relational algebra – it corresponds to

{a} × ({b} ∪ {c}) ∪ b × c .

Unfortunately, as such the results of our algorithm are not necessarily
minimal.
Think of the above as a term

a1 · (b2 + c2) + b1 · c2.

(The indices make sure that we will not by confuse the columns from
which the values come.)

Factors vs. Kernels

The terms (b2 + c2), (a1 + b1) are known as the kernels of

a1 · (b2 + c2) + b1 · c2 = a1 · b2 + (a1 + b1) · c2.

We can use the corresponding unions in our decompositions to switch
between the equivalent decompositions of a relation.

A B

a ×
b

c

b × c

⇐⇒

A B

a × b

a

b
× c

◮ Previous work on minimizing algebraic and logic functions, and
BDDs, tells us the problem we are facing is hard [cf. e.g. the work by
Brayton; Bryant].

◮ However, there are rather few kernels in each relation, and they
characterize the choices we can make during optimization.

Subtleties regarding the minimization of WSDs

◮ Theorem (Antova, K., Olteanu). The minimization algorithm
yields minimal decompositions if we have tuple ids and no bombs.

◮ Tuple ids are important in some applications, but may be ignored in
others.

◮ Then the algorithm does not necessary yield a minimal result:

t1.A t1.B t2.A t2.B

a b c d

c d e b

=⇒
t1.A

a

e

×
t1.B

b
×

t2.A

c
×

t2.B

d

◮ Bombs sometimes give additional ways of expressing world-sets as
small WSDs.

◮ Nevertheless, the algorithm does a good job and decomposing.

◮ Generally speaking, strict minimality is neither necessary nor worth
the cost.

Strong representation systems

Representation system . A tuple (W, rep) of a a set of structures

(databases) W and a function rep that maps from W to sets of worlds.

Examples: the naive tables; the WSDs.

Intuition.

Strong representation systems: “Representability under queries” .

Representation systems that are closed under application of queries.

Definition (strong representation system). A representation system
(W, rep) is called strong for a query language L if, for each query Q ∈ L

and each W ∈ W, there is a structure W ′ ∈ W such that

rep(W ′) = {Q(A) | A ∈ rep(W)}.

Note: many representation systems proposed in the literature are actually
not strong for relational algebra/SQL: naive tables (Codd), or-set
relations (Imielinski et al.), v-tables (Imielinski and Lipski), ...

Properties of WSDs

◮ Observation. Any finite world-set can be represented by a WSD.

◮ By construction: Each world-set can be written as a world-set table;
a world-set table is a (usually bad) WSD.

◮ It follows that WSDs are a strong representation system for any
relational query language.

◮ WSDs can be immediately stored in a relational database.

◮ WSDs are conveniently succinct and still appropriate for large-scale
query processing.

Conditional tables (c-tables)

◮ Tables with (possibly co-occurring) variables.

◮ A global condition that must be satisfied in order for the world to
exist.

◮ For each tuple a local condition that must be satisfied or else the
tuple is dropped from the world.

◮ C-tables can represent any finite world-set and in addition many
infinite ones (using variables)!

Theorem (Imielinski and Lipski). c-tables are a strong
representation system for relational algebra.

T S N M Cond
x Smith y true
z Brown w true

Global cond. : ((x = 185 ∧ z = 186) ∨ (x = 785∧ z = 185) ∨

(x = 785 ∧ z = 186)) ∧ (y = 1 ∨ y = 2) ∧

(w = 1 ∨ w = 2 ∨ w = 3 ∨ w = 4)

WSDs with variables

◮ WSDs can represent just finite world-sets, unlike c-tables (or even
naive tables).

◮ gWSDs : WSDs with variables and a global conjunction of
inequalities.

◮ gWSDs have the same expressive power as c-tables.

Theorem (Antova, K., Olteanu). gWSDs = c-tables.

◮ Thus gWSDs are a strong representation system for relational
algebra.

◮ The operations of relational algebra are slight generalizations of
those for WSDs.

◮ The minimization algorithm works (treat variables like domain
elements), but now there is another source of nonminimality.

Complexity results for standard decision problems

◮ Relational algebra query Q fixed.

◮ No decompositions of tuples – “tuple-level” WSDs.

◮ For instance, tuple Q-certainty: Given tuple t, W , is t ∈ Q(I) for
every world I ∈ rep(W)?

◮ Instance Q-possibility: Given instance J, W , is there an instance
I ∈ rep(W) such that J = Q(I)?

◮ gWSDs: expressiveness of c-tables, only complexity of v-tables

(even though they are exponentially more succinct than v-tables).

v-tables gWSD c-tables

Tuple Possibility PTIME PTIME NP-complete

Instance Possibility NP-complete NP-complete NP-complete

Tuple Q-Possibility PTIME∗ PTIME∗ NP-complete

Instance Q-Possibility NP-complete NP-complete NP-complete

Tuple Certainty PTIME PTIME coNP-compl.

Instance Certainty PTIME PTIME coNP-compl.

Tuple Q-Certainty coNP-compl. coNP-compl. coNP-compl.

Instance Q-Certainty coNP-compl. coNP-compl. coNP-compl.

∗ Result for positive relational algebra.

A Possible Worlds Base Management System

◮ Currently under development, a prototype exists.

◮ Built on top of Postgres.

◮ Currently implements only WSDs – no variables. Finite world-sets.

◮ We have done quite extensive experiments, I will only discuss an
example query.

◮ Data cleaning: “chasing” of integrity constraints.

◮ http://www.infosys.uni-sb.de/projects/maybms/

Two improvements over WSDs in MayBMS

WSD with Templates (WSDT):

Template S N M
t1 ? Smith ?
t2 ? Brown ?

t1.S t2.S
185 186
785 185
785 186

×
t1.M

1
2

×

t2.M
1
2
3
4

◮ Store the data values common to all worlds in a conventional
database table (with nulls), the template relation.

◮ Uniform WSDTs: store component relations in a single relation with
schema (component id, tuple id, local world id, attribute name,
value).

◮ Otherwise WSDs may require millions of relational tables of, in the
worst case, unbounded arity.

Experiments

◮ Data set: 5% of US census, anonymized (only 5% is publicly
available).

◮ One relation with ≈ 12.5 millon tuples, 50 columns.

◮ Noise was artificially introduced: for up to 0.1% of the fields we
introduced 2 to 8 alternatives.

◮ About 210
6

worlds, each one several GB large.

◮ Data cleaning to eliminate certain possible worlds (leads to merging
of components).

◮ Data cleaning constraints and queries were written by us.

Experiments

Density 0.005% 0.01% 0.05% 0.1%
Initial #comp 31117 62331 312730 624449
After #comp 30918 61791 309778 612956
chase #comp>1 249 522 2843 10880

|C | 108276 217013 1089359 2150935
|R | 12.5M 12.5M 12.5M 12.5M

After #comp 25 56 312 466
Q2 #comp>1 0 1 8 9

|C | 93 269 1682 2277
|R | 82995 83052 83357 83610

Query Q2 returns information including the place of birth of US citizens
born outside to US who do not speak English well:

Q2 = πPOWSTATE,CITIZEN,IMMIGR(σCITIZEN<>0∧ENGLISH>3(R))

Experiments

 0.01

 0.1

 1

 10

 100

 12.510 7.5 5 1 0.5 0.1

tim
e

in
 s

ec
on

ds
 (

ln
 s

ca
le

)

#tuples in millions (ln scale)

0%
0.005%
0.01%
0.05%

0.1%

Summary

◮ MayBMS: A system for the scalable management of incomplete
information.

◮ Foundations: Expressivenes, Representability, Complexity,
Minimization.

◮ Leverages relational DBMS technologies.

◮ Experiments.
◮ On selection/projection queries we in practice have a constant

overhead of a factor of 3 to 5 over Postgres running the same queries
on a single world.

◮ Joins show exponential behaviour, but we can do them for this
census database.

◮ Universal operations (difference, certain aggregations) need further
work.

Probabilistic WSDs

◮ Traditionally: very strong independence assumptions.
◮ Example: MystiQ (U. Washington).

◮ Probabilities on worlds can be added to WSDs in a straightforward
way. Decompositions manifest independence:

C1 t1.A P

a 0.3
b 0.7

×
C1 t2.A P

c 0.9
d 0.1

Here world
R A

a

d

has probability 0.3 · 0.1.

◮ Query processing on probabilistic WSDs: recent demo at ICDE’07.

Future work: managing data extensionally and intensionally

◮ Currently, MayBMS stores all its data extensionally (in WSDs).

◮ Take a data cleaning rule, remove impossible worlds, never think of
them again.

◮ Universal operations can merge large numbers of components ⇒
Representation gets large.

◮ Intensional approach : Trio (Stanford) stores its information in a

weak representation system making strong independence
assumptions and adds constraints (called lineage) to represent
dependencies. For query answering, always apply all the constraints.

◮ Higher complexity and overhead, but representation remains small.
◮ No experiments with Trio have been reported.

◮ Current work: combine the advantages of the intensional and
extensional approach in an intelligent way.

◮ Product-union decompositions are a different way of dealing with
the blowup in representation size.

END

References

◮ MayBMS Homepage

http://www.infosys.uni-sb.de/projects/maybms/

◮ L. Antova, C. Koch, and D. Olteanu. From Complete to Incomplete
Information and Back. Proc. SIGMOD 2007 , Beijing, China.

◮ L. Antova, C. Koch, and D. Olteanu. World-Set Decompositions:
Expressiveness and Efficient Algorithms. Proc. ICDT 2007 ,
Barcelona, Spain.

◮ L. Antova, C. Koch, and D. Olteanu. 1010
6

Worlds and Beyond:
Efficient Representation and Processing of Incomplete Information.
Proc. ICDE 2007 , Istanbul, Turkey.

◮ L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing
Incomplete Information with Probabilistic World-Set
Decompositions. Proc. ICDE 2007 , Istanbul, Turkey. (Demo Paper.)

◮ L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and Simple
Relational Processing of Uncertain Data. Submitted for publication,
2007.

	World-set SQL
	MayBMS

