

MayBMS – A System for Managing Large Amounts of Incomplete Information

> Christoph Koch Universität des Saarlandes

koch@infosys.uni-sb.de

Joint work with Lyublena Antova and Dan Olteanu

YO A GREEK YEAR OR YOUR

Incomplete information

 \triangleright Databases with missing information

- ▶ Important in many data management applications:
	- \blacktriangleright data integration, data exchange
	- \blacktriangleright data cleaning and warehousing
	- ▶ Web information extraction
	- \blacktriangleright scientific databases
	- \blacktriangleright computational linguistics
	- ▶ management information systems, expert systems ...
- ▶ Current database management systems do not support these applications.
- \triangleright Knowledge representation (AI) has come up with very interesting formalisms such as Answer Set Programming but these do not scale to these applications.

YO A REAR OF YOUR

Overview of this talk

- ▶ Motivation. Possible worlds semantics.
- ► World-set SQL
- ▶ The MayBMS representation system: World-set Decompositions (WSDs).
	- \blacktriangleright Leverage existing relational DBMS techniques.
- ► Efficient query processing on WSDs.
- \blacktriangleright Minimizing representations.
- \blacktriangleright Foundations: Expressiveness and complexity, representing infinite world-sets.

YO A REAGE YOU ARE A REAGE YOU

- \blacktriangleright Experiments with MayBMS.
- ▶ Conclusions and outlook.

Consider the relational database table

$$
\begin{array}{c|c}\n & A \\
\hline\n & 1\n\end{array}
$$

What does the following query produce?

select 'yes' from R where R.A = R.A;

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Consider the relational database table

$$
\begin{array}{c|c}\n & A \\
\hline\n & 1\n\end{array}
$$

What does the following query produce?

select 'yes' from R where $R.A = R.A$;

K ロ X K @ X K 할 X K 할 X (할 X) 이익(아

- ▶ Answer: one tuple: 'yes'
- \triangleright Same result if we replace 1 by a different value.

Consider the relational database table with a $\frac{1}{\sqrt{2}}$ mull value ("don't know")

$$
\begin{array}{c|c}\n & A \\
\hline\n & null\n\end{array}
$$

What does the following query produce?

```
select 'yes' from R where R.A = R.A;
```
K ロ X K @ X K 할 X K 할 X (할 X) 이익(아

Consider the relational database table with a null value ("don't know")

$$
\begin{array}{c|c}\n & A \\
\hline\n & null\n\end{array}
$$

What does the following query produce?

```
select 'yes' from R where R.A = R.A;
```
 \blacktriangleright Answer: no tuples

 \triangleright Explanation: 3-valued condition semantics (true, false, unknown).

The semantics of SQL is unintuitive.

What we really want is a **possible worlds semantics** in which we can reason for query

select 'yes' from R where $R.A = R.A$;

as follows.

- \triangleright No matter what value the null takes, there is a tuple and the condition is true.
- \triangleright Thus 'yes' is a certain answer : it should be returned in all possible worlds.

ADD 4 REPAIR AND A COA

▶ Return 'yes'.

Problem: complexity

- \triangleright A relational table with simple null values as in SQL but with a possible worlds semantics is called a naive table.
- \blacktriangleright Unfortunately,

Theorem (Abiteboul, Kanellakis, Grahne). There is a fixed (and even rather simple) SQL query that is NP-hard to evaluate on naive tables.

 \triangleright Reason: Naive tables are a very succinct representation of (infinitely) many possible worlds.

ADD 4 REPAIR AND A COA

▶ Note: SQL has PTIME query evaluation (if queries are fixed).

 \triangleright Nevertheless, in many applications we need possible worlds.

Census data scenario

Suppose we have to enter the information from forms like these into a database.

- ▶ What is the marital status of the first resp. the second person?
- ▶ What are the social security numbers? 185? 186? 785?

Representation systems: naive tables (SQL)

Much of the available information cannot be represented and is lost, e.g.

- 1. Smith's SSN is either 185 or 785.
- 2. Brown's SSN is either 185 or 186.
- 3. Data cleaning: No two distinct persons can have the same SSN: The case that Smith and Brown both have SSN [18](#page-9-0)[5 i](#page-11-0)[s](#page-9-0) [ex](#page-10-0)[c](#page-11-0)[lud](#page-0-0)[e](#page-10-0)[d](#page-11-0)[.](#page-0-0) 000

- 1. Suppose I choose to buy exactly one company.
- 2. Assume that one (key) employee leaves that company.
- 3. If I acquire that company, which skills can I obtain for certain?
- 4. Now list the possible acquisition targets if I want to guarantee to gain the skill "Web" by the acquisition.

YO A GREEK YEAR OR YOUR

► Suppose I choose to buy exactly one company.

K ロ K イロ K モ X モ X モ X モ コ の Q Q C

 \triangleright Assume that one (key) employee leaves that company.

 $\mathsf{V} \leftarrow \mathsf{\quad from \quad}$ (select * from U **choice of** EID) R1, Company Emp R2 select R1.CID, R2.EID where $R1.CID = R2.CID$ and $R1.EID := R2.EID$;

V CID EID V CID EID Google e1 Google e2 V CID EID V CID EID V CID EID Yahoo e3 Yahoo e3 Yahoo e4 Yahoo e4 Yahoo e5 Yahoo e5

If I acquire that company, which skills can I obtain for $\frac{\text{certain}}{\text{?}}$

K ロ K イロ K モ X モ X モ X モ コ の Q Q C

▶ Now list the **possible** acquisition targets if I want to guarantee to gain the skill "Web" by the acquisition.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Beyond SQL: World-set SQL

- \blacktriangleright The language of the Google/Yahoo example.
- \blacktriangleright Syntax of select queries:

- \triangleright Intuition: Queries execute within each world individually but may look outside if necessary.
- ▶ This viewpoint is important for getting a clean semantics to views and query-based updates.

Properties of World-set SQL

- ▶ World-set SQL: The language of the Google/Yahoo example.
- \triangleright Goal: A language that is a natural analog to SQL, on world-sets.
	- \blacktriangleright Representation-independent.
	- \triangleright Not too strong and not too weak.
- ▶ Conservativity . Theorem (Antova, K., Olteanu). Each single-world to single-world query in World-set SQL is equivalent to an SQL query.
	- \triangleright Thus W-S SQL is not too strong.
- \triangleright Efficient reductions . Each 1W/1W query can be efficiently translated to $SQL.$ (+ linear output size)
	- \blacktriangleright Practical evaluation technique.
	- \blacktriangleright Translation is interesting, e.g., generalizations of relational division for translating certain [... group worlds by].

Main Goals of the MayBMS Project

- ▶ Create a **scalable** DBMS for supporting incomplete information (world-sets).
- ▶ Scalability should be comparable to current relational databases.
- ▶ Develop storage and query processing techniques.
- ▶ Design a query and data manipulation language (like SQL for RDBMS) for world-set databases.
	- \blacktriangleright The queries in the previous example were phrased in our language.

- \blacktriangleright Enable and deploy in novel data management applications.
- \triangleright Representation system: way of storing sets of worlds (on disk).
- ▶ Our approach: World-set Decompositions.
- \triangleright We will use the census data scenario as a guiding example.

Desiderata for a representation system

1. Succinctness/Space-efficient storage .

- \blacktriangleright Usually there are many rather independent local alternatives, which multiply up to a very large number of worlds.
- \triangleright Suppose the US census, before cleaning, contains two possible readings for 0.1% of the answers. Then that is on the order of $2^{10,000,000}$ worlds, each one close to one Terabyte of data.
- \triangleright But then, not quite independent, or otherwise representation would not be so difficult.

- 2. **Efficient real-world query processing**. There is a tradeoff with succinctness and a lower bound from naive tables. We want to do well in practice.
- 3. Expressiveness/Representability . Ability to represent all query results.

World-set tables

- \blacktriangleright Tabular representation of set of possible worlds. Uses tuple ids.
- ▶ Columns: Fields of one world. Rows: Alternative worlds.

- ▶ Pad with null values (**"bombs"**) to get uniform arity if not all worlds have the same number of tuples in each relation.
- \blacktriangleright This represents the world-set

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

World-set decompositions (WSDs)

World-set table:

WSD: Product decomposition of world-set table.

 \Rightarrow \Rightarrow

Ξ

 QQ

To reverse, compute product of the component [rela](#page-20-0)[tio](#page-22-0)[n](#page-20-0)[s.](#page-21-0)

World-set decompositions (WSDs): Bombs

World #1: (TID) A B t¹ a c World #2: (TID) A B t¹ b c World #3: (TID) A B

WSD representation:

$$
\begin{array}{|c|c|c|c|c|c|c|c|} \hline t_1.A & t_1.B & & & t_1.A & & t_1.B & \\ \hline a & c & & a & c & & a & c \\ b & c & & b & & c & & a & b & c \\ \hline \bot & \bot & & & b & & \bot & & b & \bot & & \bot \end{array} \hspace{0.2cm} = \hspace{0.2cm} \begin{array}{|c|c|c|c|c|c|c|c|} \hline t_1.A & t_1.B & & & t_1.B & & & \\ \hline a & c & & & a & c & & a & c \\ b & c & & a & & \bot & & \bot & & \bot \\ b & & b & & \bot & & & \bot & & \bot \end{array}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Data Cleaning on WSDs

Consider WSD

We clean this dataset – no two persons can have the same SSN.

YO A REAGE YOU ARE A REAGE YOU

Note: you cannot represent this world-set using single attribute components ("or-sets").

Queries: Relational selection (select $*$ from R where $C=7$)

Query $P := \sigma_{C=7}(R)$ on WSD

- 1. Replace all values in $R.t_i.C$ fields that are different from 7 by bombs.
- 2. Propagate bombs to all $P.t_i.B$, i.e., other fields of the same tuple, within the same component. Result:

3. Remove tuples that are "mined" in all worlds. Result:

$$
\begin{array}{|c|c|c|c|}\hline P.t_1.A & & P.t_1.B & P.t_1.C \\ \hline 1 & \times & \perp & \perp \\ 2 & 2 & 7 \\ \hline \end{array}
$$

Note: Join conditions $A = B$ require the merging of the components of $t_i.A$ and t_i . B if they are different. **YO A REAR OF YOUR**

Queries: Relational projection (select A from R)

Given WSD

representing world-set

(TID)	A	B
t_1	a	c

\n t_2

\n t_3

\n t_4

\n t_5

\n t_6

\n t_7

\n t_8

\n t_9

\n t_1

\n t_2

\n t_3

\n t_4

\n t_5

\n t_6

\n t_7

\n t_8

\n t_9

The projection $\pi_A(R)$ is

YO A REAGE YOU ARE A REAGE YOU

Although of low complexity, the algorithm is rather involved.

Queries: Relational product (select * from R, S)

WSDs are product decompositions: no need to merge components.

Minimizing WSDs

- \triangleright Given a WSD, find an as small as possible equivalent representation for it.
- \triangleright If we think of WSDs simply as product-decompositions, there is actually a unique minimal equivalent representation as a WSD: the prime factorization .
- ► This is closely related to work by Brayton on factorizing algebraic functions.
- ▶ Theorem (Antova, K., Olteanu). The primes can be computed efficiently in time $O(n \log n)$ on disk.
- \blacktriangleright In linear time in main memory if we assume the arity of the input relation fixed.
- ▶ But WSDs have a richer structure: We will see later that the primes do not necessarily provide a minimal decomposition.

Relation and Corresponding Trie

 $2Q$ K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 画

 299

注

 299

注

L.

 299 K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 注

1 4 5 3 7 2 6 8 b a × a × b × c × a × × a × b c b × c × a b × a b 2 4 5 6 8 3 7 b b a × a × × c × × b × c c c b × a b 2 4 5 6 8 3 7 b b b × a × × c × × c × ac c b × a

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ () 할 / 19 Q Q Q

K ロ ▶ K @ ▶ K 할 > K 할 > (할) X 9 Q Q *

Decomposition result:

● H 2990

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Product-Union Decompositions

We can think of

as a decomposition with respect to the operations product \times and union ∪ of relational algebra – it corresponds to

 ${a} \times ({b} \cup {c}) \cup b \times c.$

Unfortunately, as such the results of our algorithm are not necessarily minimal.

Think of the above as a term

$$
a_1\cdot (b_2+c_2)+b_1\cdot c_2.
$$

(The indices make sure that we will not by confuse the columns from which the values come.)**K ロ ▶ K @ ▶ K 콜 K K 콜 K - 콜 - ④ Q (^**

Factors vs. Kernels

The terms $(b_2 + c_2)$, $(a_1 + b_1)$ are known as the kernels of

$$
a_1 \cdot (b_2 + c_2) + b_1 \cdot c_2 = a_1 \cdot b_2 + (a_1 + b_1) \cdot c_2.
$$

We can use the corresponding unions in our decompositions to switch between the equivalent decompositions of a relation.

- ▶ Previous work on minimizing algebraic and logic functions, and BDDs, tells us the problem we are facing is hard [cf. e.g. the work by Brayton; Bryant].
- \blacktriangleright However, there are rather few kernels in each relation, and they characterize the choices we can make during optimization.

Subtleties regarding the minimization of WSDs

- ▶ Theorem (Antova, K., Olteanu). The minimization algorithm yields minimal decompositions if we have tuple ids and no bombs.
- \triangleright Tuple ids are important in some applications, but may be ignored in others.
- \triangleright Then the algorithm does not necessary yield a minimal result:

$$
\begin{array}{ccc}\n t_1.A & t_1.B & t_2.A & t_2.B \\
 a & b & c & d \\
 c & d & e & b\n\end{array}\n\Longrightarrow \n\begin{array}{c}\n t_1.A \\
 a \\
 e\n\end{array}\n\times\n\begin{array}{c}\n t_1.B \\
 b\n\end{array}\n\times\n\begin{array}{c}\n t_2.A \\
 b\n\end{array}\n\times\n\begin{array}{c}\n t_2.B \\
 c\n\end{array}\n\times\n\begin{array}{c}\n t_2.B \\
 d\n\end{array}
$$

- ▶ Bombs sometimes give additional ways of expressing world-sets as small WSDs.
- \triangleright Nevertheless, the algorithm does a good job and decomposing.
- \triangleright Generally speaking, strict minimality is neither necessary nor worth the cost.

Strong representation systems

Representation system A tuple (W, rep) of a a set of structures (databases) W and a function rep that maps from W to sets of worlds.

Examples: the naive tables; the WSDs.

Intuition.

Strong representation systems: "Representability under queries"

Representation systems that are closed under application of queries.

Definition (strong representation system). A representation system (W, rep) is called strong for a query language L if, for each query $Q \in L$ and each $W \in W$, there is a structure $W' \in W$ such that

 $rep(\mathcal{W}') = \{ Q(\mathcal{A}) | \mathcal{A} \in rep(\mathcal{W}) \}.$

Note: many representation systems proposed in the literature are actually not strong for relational algebra/SQL: naive tables (Codd), or-set relations (Imielinski et al.), v-tables (Imielinski a[nd](#page-45-0) [Li](#page-47-0)[ps](#page-45-0)[ki](#page-46-0)[\),](#page-47-0) [.](#page-17-0)[..](#page-18-0)
Example: All Alles (International Alles Alle

- ▶ Observation. Any finite world-set can be represented by a WSD.
- \triangleright By construction: Each world-set can be written as a world-set table; a world-set table is a (usually bad) WSD.
- ► It follows that WSDs are a strong representation system for any relational query language.
- ► WSDs can be immediately stored in a relational database.
- ▶ WSDs are conveniently succinct and still appropriate for large-scale query processing.

Conditional tables (c-tables)

- \blacktriangleright Tables with (possibly co-occurring) variables.
- A global condition that must be satisfied in order for the world to exist.
- ► For each tuple a local condition that must be satisfied or else the tuple is dropped from the world.
- ► C-tables can represent any finite world-set and in addition many infinite ones (using variables)!

Theorem (Imielinski and Lipski). c-tables are a strong representation system for relational algebra.

Global cond. :
$$
((x = 185 \land z = 186) \lor (x = 785 \land z = 185) \lor (x = 785 \land z = 186)) \land (y = 1 \lor y = 2) \land (w = 1 \lor w = 2 \lor w = 3 \lor w = 4)
$$

\n187. (a) $(x = 187 \land y = 187)$

\n29. (b) $(x = 187 \land y = 187)$

WSDs with variables

- ▶ WSDs can represent just finite world-sets, unlike c-tables (or even naive tables).
- ► eWSDs: WSDs with variables and a global conjunction of inequalities.
- \triangleright gWSDs have the same expressive power as c-tables.

Theorem (Antova, K., Olteanu). $gWSDs = c$ -tables.

- ► Thus gWSDs are a strong representation system for relational algebra.
- ► The operations of relational algebra are slight generalizations of those for WSDs.
- \triangleright The minimization algorithm works (treat variables like domain elements), but now there is another source of nonminimality.

Complexity results for standard decision problems

- Relational algebra query Q fixed.
- ▶ No decompositions of tuples "tuple-level" WSDs.
- ► For instance, tuple Q-certainty: Given tuple t, W, is $t \in Q(I)$ for every world $I \in rep(W)$?
- ighthroarrow Instance Q-possibility: Given instance J, W , is there an instance $I \in rep(W)$ such that $J = Q(I)$?

► gWSDs: expressiveness of c-tables, only complexity of v-tables (even though they are exponentially more succinct than v-tables).

[∗] Result for positive relational algebra.

A Possible Worlds Base Management System

- \blacktriangleright Currently under development, a prototype exists.
- ► Built on top of Postgres.
- \triangleright Currently implements only WSDs no variables. Finite world-sets.
- ▶ We have done quite extensive experiments, I will only discuss an example query.

YO A REAGE YOU ARE A REAGE YOU

- \triangleright Data cleaning: "chasing" of integrity constraints.
- \blacktriangleright http://www.infosys.uni-sb.de/projects/maybms/

Two improvements over WSDs in MayBMS

WSD with Templates (WSDT):

- \triangleright Store the data values common to all worlds in a conventional database table (with nulls), the template relation.
- ▶ Uniform WSDTs: store component relations in a single relation with schema (component id, tuple id, local world id, attribute name, value).
	- ▶ Otherwise WSDs may require millions of relational tables of, in the worst case, unbounded arity.

- \triangleright Data set: 5% of US census, anonymized (only 5% is publicly available).
- ► One relation with \approx 12.5 millon tuples, 50 columns.
- \blacktriangleright Noise was artificially introduced: for up to 0.1% of the fields we introduced 2 to 8 alternatives.
	- \blacktriangleright About 2^{10^6} worlds, each one several GB large.
- \triangleright Data cleaning to eliminate certain possible worlds (leads to merging of components).

ADD 4 REPAIR AND A COA

▶ Data cleaning constraints and queries were written by us.

Experiments

Query Q_2 returns information including the place of birth of US citizens born outside to US who do not speak English well:

 $Q_2 = \pi$ powstate,citizen,immigr $(\sigma$ citizen \lt >0 \land english>3 (R))

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

Experiments

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 그럴 → 이익(여

Summary

- ► MayBMS: A system for the scalable management of incomplete information.
- ▶ Foundations: Expressivenes, Representability, Complexity, Minimization.
- ▶ Leverages relational DBMS technologies.
- ▶ Experiments.
	- \triangleright On selection/projection queries we in practice have a constant overhead of a factor of 3 to 5 over Postgres running the same queries on a single world.
	- ▶ Joins show exponential behaviour, but we can do them for this census database.
	- ▶ Universal operations (difference, certain aggregations) need further work.

YO A REAR OF YOUR

Probabilistic WSDs

 \blacktriangleright Traditionally: very strong independence assumptions.

- Example: MystiQ $(U.$ Washington).
- ▶ Probabilities on worlds can be added to WSDs in a straightforward way. Decompositions manifest independence:

Here world

$$
\begin{array}{c|c}\n & A \\
\hline\n & a \\
d\n\end{array}
$$

has probability $0.3 \cdot 0.1$.

▶ Query processing on probabilistic WSDs: recent demo at ICDE'07.

Future work: managing data extensionally and intensionally

- ► Currently, MayBMS stores all its data extensionally (in WSDs).
	- \blacktriangleright Take a data cleaning rule, remove impossible worlds, never think of them again.
- \triangleright Universal operations can merge large numbers of components \Rightarrow Representation gets large.
- ► Intensional approach : Trio (Stanford) stores its information in a weak representation system making strong independence assumptions and adds constraints (called lineage) to represent dependencies. For query answering, always apply all the constraints.
	- \blacktriangleright Higher complexity and overhead, but representation remains small.

- \triangleright No experiments with Trio have been reported.
- \triangleright Current work: combine the advantages of the intensional and extensional approach in an intelligent way.
- ▶ Product-union decompositions are a different way of dealing with the blowup in representation size.

END

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @

References

► MayBMS Homepage http://www.infosys.uni-sb.de/projects/maybms/

- ▶ L. Antova, C. Koch, and D. Olteanu. From Complete to Incomplete Information and Back. Proc. SIGMOD 2007, Beijing, China.
- ▶ L. Antova, C. Koch, and D. Olteanu. World-Set Decompositions: Expressiveness and Efficient Algorithms. Proc. ICDT 2007, Barcelona, Spain.
- \blacktriangleright L. Antova, C. Koch, and D. Olteanu. 10^{10^6} Worlds and Bevond: Efficient Representation and Processing of Incomplete Information. Proc. ICDE 2007, Istanbul, Turkey.
- ▶ L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing Incomplete Information with Probabilistic World-Set Decompositions. Proc. ICDE 2007, Istanbul, Turkey. (Demo Paper.)
- ▶ L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and Simple Relational Processing of Uncertain Data. Submitted for publication, 2007.