
MayBMS: A System for Managing Large Uncertain and

Probabilistic Databases∗

Christoph Koch

Department of Computer Science

Cornell University, Ithaca, NY

koch@cs.cornell.edu

Abstract

MayBMS is a state-of-the-art probabilistic database management system that has
been built as an extension of Postgres, an open-source relational database management
system. MayBMS follows a principled approach to leveraging the strengths of previous
database research for achieving scalability. This article describes the main goals of this
project, the design of query and update language, efficient exact and approximate query
processing, and algorithmic and systems aspects.

Acknowledgments. My collaborators on the MayBMS project are Dan Olteanu
(Oxford University), Lyublena Antova (Cornell), Jiewen Huang (Oxford), and Michaela
Goetz (Cornell). Thomas Jansen and Ali Baran Sari are alumni of the MayBMS team.
I thank Dan Suciu for the inspirational talk he gave at a Dagstuhl seminar in February
of 2005, which triggered my interest in probabilistic databases and the start of the
project. I am also indebted to Joseph Halpern for insightful discussions. The project
was previously supported by German Science Foundation (DFG) grant KO 3491/1-1
and by funding provided by the Center for Bioinformatics (ZBI) at Saarland University.
It is currently supported by NSF grant IIS-0812272, a KDD grant, and a gift from Intel.

1 Introduction

Database systems for uncertain and probabilistic data promise to have many applications.
Query processing on uncertain data occurs in the contexts of data warehousing, data in-
tegration, and of processing data extracted from the Web. Data cleaning can be fruitfully
approached as a problem of reducing uncertainty in data and requires the management
and processing of large amounts of uncertain data. Decision support and diagnosis systems
employ hypothetical (what-if) queries. Scientific databases, which store outcomes of sci-
entific experiments, frequently contain uncertain data such as incomplete observations or
imprecise measurements. Sensor and RFID data is inherently uncertain. Applications in
the contexts of fighting crime or terrorism, tracking moving objects, surveillance, and pla-
giarism detection essentially rely on techniques for processing and managing large uncertain
datasets. Beyond that, many further potential applications of probabilistic databases exist
and will manifest themselves once such systems become available.

∗This article will appear as Chapter 6 of Charu Aggarwal, ed., Managing and Mining Uncertain Data,
Springer-Verlag, 2008/9.

1

Inference in uncertain data is a field in which the Artificial Intelligence research commu-
nity has made much progress in the past years. Some of the most exciting AI applications,
such as using graphical models in biology, belong to this area. While a number of papers on
uncertain data and probabilistic databases have been written within the data management
research community over the past decades, this area has moved into the focus of research
interest only very recently, and work on scalable systems has only just started.

The MayBMS project1 aims at creating a probabilistic database management system
by leveraging techniques developed by the data management research community. The
MayBMS project is founded on the thesis that a principled effort to use previous insights
from databases will allow for substantial progress towards more robust and scalable systems
for managing and querying large uncertain datasets. This will have a positive impact on
current applications such as in computational science and will allow for entirely new data
management applications.

Central themes in our research include the creation of foundations of query languages
for probabilistic databases by developing analogs of relational algebra [22, 21] and SQL
[6, 8] and the development of efficient query processing techniques [5, 25, 3, 23, 24, 17].
In practice, the efficient evaluation of queries on probabilistic data requires approximation
techniques, and another important goal was to understand which approximation guarantees
can be made for complex, realistic query languages [22, 15].

We have worked on developing a complete database management system for uncertain
and probabilistic data. Apart from data representation and storage mechanisms, a query
language, and query processing techniques, our work covers query optimization, an update
language, concurrency control and recovery, and APIs for uncertain data.

MayBMS stands alone as a complete probabilistic database management system that
supports a very powerful, compositional query language for which nevertheless worst-case
efficiency and result quality guarantees can be made. Central to this is our choice of es-
sentially using probabilistic versions of conditional tables [18] as the representation system,
but in a form engineered for admitting the efficient evaluation and automatic optimization
of most operations of our language using robust and mature relational database technology
[3].

The structure of this article is as follows. Section 2 sketches our model of probabilistic
databases. Section 3 outlines desiderata that have guided the design of our query languages.
Section 4 introduces our query algebra and illustrates it by examples. The section also gives
an overview over theoretical results, in particular on expressiveness, that have been achieved
for this algebra. Section 5 introduces U-relations, the representation system of MayBMS.
Section 6 shows how most of the operations of our algebra can be evaluated efficiently using
mature relational database techniques. Moreover, the problem of efficiently processing the
remaining operations is discussed and an overview of the known results on the (worst-case)
complexity of the query algebra is given. Section 7 presents the query and update language
of MayBMS, which is based on our algebra but uses an extension of SQL as syntax. Section 8
discusses further systems issues. Section 9 concludes.

This article is meant to provide an overview over the MayBMS project and some topics
are covered in a sketchy fashion. For details on the various techniques, experiments, and the
theoretical contributions, the reader is referred to the original technical papers on MayBMS
that can be found in the references.

1MayBMS is read as “maybe-MS”, like DBMS.

2

2 Probabilistic Databases

Informally, our model of probabilistic databases is the following. The schema of a prob-
abilistic database is simply a relational database schema. Given such a schema, a proba-
bilistic database is a finite set of database instances of that schema (called possible worlds),
where each world has a weight (called probability) between 0 and 1 and the weights of all
worlds sum up to 1. In a subjectivist Bayesian interpretation, one of the possible worlds
is “true”, but we do not know which one, and the probabilities represent degrees of belief
in the various possible worlds. Note that this is only the conceptual model. The physical
representation of the set of possible worlds in the MayBMS system is quite different (see
Section 5).

Given a schema with relation names R1, . . . , Rk. We use sch(Rl) to denote the attributes
of relation schema Rl. Formally, a probabilistic database is a finite set of structures

W = {〈R1
1, . . . , R

1
k, p

[1]〉, . . . , 〈Rn1 , . . . , R
n
k , p

[n]〉}

of relations Ri1, . . . , R
i
k and numbers 0 < p[i] ≤ 1 such that

∑

1≤i≤n

p[i] = 1.

We call an element 〈Ri1, . . . , R
i
k, p

[i]〉 ∈ W a possible world , and p[i] its probability. We
use superscripts for indexing possible worlds. To avoid confusion with exponentiation, we
sometimes use bracketed superscripts ·[i]. We call a relation R complete or certain if its
instantiations are the same in all possible worlds of W, i.e., if R1 = · · · = Rn.

Tuple confidence refers to the probability of the event ~t ∈ R, where R is one of the
relation names of the schema, with

Pr[~t ∈ R] =
∑

1≤i≤n: ~t∈Ri

p[i].

3 Query Language Desiderata

At the time of writing this, there is no accepted standard query language for probabilistic
databases. In fact, we do not even agree today what use cases and functionality such
systems should support. It seems to be proper to start the query language discussion with
the definition of design desiderata. The following are those used in the design of MayBMS.

1. Efficient query evaluation.

2. The right degree of expressive power. The language should be powerful enough to
support important queries. On the other hand, it should not be too strong, because
expressiveness generally comes at a price: high evaluation complexity and infeasibil-
ity of query optimization. Can a case be made that some language is in a natural
way a probabilistic databases analog of the relationally complete languages (such as
relational algebra) – an expressiveness yardstick?

3. Genericity. The semantics of a query language should be independent from details of
how the data is represented. Queries should behave in the same way no matter how
the probabilistic data is stored. This is a basic requirement that is even part of the
traditional definition of what constitutes a query (cf. e.g. [1]), but it is nontrivial to
achieve for probabilistic databases [6, 4].

3

4. The ability to transform data. Queries on probabilistic databases are often interpreted
quite narrowly in the literature. It is the author’s view that queries in general should
be compositional mappings between databases, in this case probabilistic databases.
This is a property taken for granted in relational databases. It allows for the definition
of clean database update languages.

5. The ability to introduce additional uncertainty. This may appear to be a contro-
versial goal, since uncertainty is commonly considered undesirable, and probabilistic
databases are there to deal with it by providing useful functionality despite uncer-
tainty. However, it can be argued that an uncertainty-introduction operation is im-
portant for at least three reasons: (1) for compositionality, and to allow construction
of an uncertain database from scratch (as part of the update language); (2) to support
what-if queries; and (3) to extend the hypothesis space modeled by the probabilistic
database. The latter is needed to accommodate the results of experiments or new ev-
idence, and to define queries that map from prior to posterior probabilistic databases.
This is a nontrivial issue, and will be discussed in more detail later.

The next section introduces a query algebra and argues that it satisfies each of these
desiderata.

4 The Algebra

This section covers the core query algebra of MayBMS: probabilistic world-set algebra (prob-
abilistic WSA) [6, 22, 21]. Informally, probabilistic world-set algebra consists of the op-
erations of relational algebra, an operation for computing tuple confidence conf, and the
repair-key operation for introducing uncertainty. The operations of relational algebra are
evaluated individually, in “parallel”, in each possible world. The operation conf(R) com-
putes, for each tuple that occurs in relation R in at least one world, the sum of the proba-
bilities of the worlds in which the tuple occurs. The result is a certain relation, or viewed
differently, a relation that is the same in all possible worlds. Finally, repair-key ~A@P (R),

where ~A,P are attributes of R, conceptually nondeterministically chooses a maximal repair
of key ~A. This operation turns a possible world Ri into the set of worlds consisting of all
possible maximal repairs of key ~A. A repair of key ~A in relation Ri is a subset of Ri for
which ~A is a key. It uses the numerically-valued column P for weighting the newly created
alternative repairs.

Formally, probabilistic world-set algebra consists of the following operations:

• The operations of relational algebra (selection σ, projection π, product ×, union ∪,
difference −, and attribute renaming ρ), which are applied in each possible world
independently.

The semantics of operations Θ on probabilistic database W is [[Θ(Rl)]](W) :=
{〈R1, . . . , Rk,Θ(Rl), p〉 | 〈R1, . . . , Rk, p〉 ∈W} for unary operations (1 ≤ l ≤ k). For
binary operations, the semantics is [[Θ(Rl, Rm)]](W) := {〈R1, . . . , Rk,Θ(Rl, Rm), p〉 |
〈R1, . . . , Rk, p〉 ∈W}.

Selection conditions are Boolean combinations of atomic conditions (i.e., negation is
permitted even in the positive fragment of the algebra). Arithmetic expressions may
occur in atomic conditions and in the arguments of π and ρ. For example, ρA+B→C(R)

4

in each world adds up the A and B values of each tuple of R and keeps them in a
new C attribute.

• An operation for computing tuple confidence,

[[conf(Rl)]](W) := {〈R1, . . . , Rk, S, p〉 | 〈R1, . . . , Rk, p〉 ∈W}

where, w.l.o.g., P 6∈ sch(Rl), and

S = {〈~t, P : Pr[~t ∈ Rl]〉 | ~t ∈
⋃

i

Ril},

with schema sch(S) = sch(Rl) ∪ {P}. The result of conf(Rl), the relation S, is the
same in all possible worlds, i.e., it is a certain relation.

By our definition of probabilistic databases, each possible world has nonzero proba-
bility. As a consequence, conf does not return tuples with probability 0.

For example, on probabilistic database

R1 A B

a b
b c

p[1] = .3
R2 A B

a b
c d

p[2] = .2
R3 A B

a c
c d

p[3] = .5

conf(R) computes, for each possible tuple, the sum of the weights of the possible
worlds in which it occurs, here

conf(R) A B P

a b .5
a c .5
b c .3
c d .7

• An uncertainty-introducing operation, repair-key , which can be thought of as sam-
pling a maximum repair of a key for a relation. Repairing a key of a complete relation
R means to compute, as possible worlds, all subset-maximal relations obtainable from
R by removing tuples such that a key constraint is satisfied. We will use this as a
method for constructing probabilistic databases, with probabilities derived from rel-
ative weights attached to the tuples of R.

We say that relation R′ is a maximal repair of a functional dependency (fd, cf. [1]) for
relation R if R′ is a maximal subset of R which satisfies that functional dependency,
i.e., a subset R′ ⊆ R that satisfies the fd such that there is no relation R′′ with
R′ ⊂ R′′ ⊆ R that satisfies the fd.

Let ~A,B ∈ sch(Rl). For each possible world 〈R1, . . . , Rk, p〉 ∈W, let column B of R
contain only numerical values greater than 0 and let Rl satisfy the fd (sch(Rl)−B)→
sch(Rl). Then,

[[repair-key ~A@B(Rl)]](W) :=
{

〈R1, . . . , Rk, πsch(Rl)−B(R̂l), p̂〉 | 〈R1, . . . , Rk, p〉 ∈W,

R̂l is a maximal repair of fd ~A→ sch(Rl),

p̂ = p ·
∏

~t∈R̂l

~t.B
∑

~s∈Rl:~s. ~A=~t. ~A ~s.B

}

5

Such a repair operation, apart from its usefulness for the purpose implicit in its name,
is a powerful way of constructing probabilistic databases from complete relations.

Example 4.1 Consider the example of tossing a biased coin twice. We start with a
certain database

R Toss Face FProb

1 H .4
1 T .6
2 H .4
2 T .6

p = 1

that represents the possible outcomes of tossing the coin twice. We turn this into
a probabilistic database that represents this information using alternative possible
worlds for the four outcomes using the query S := repair-keyToss@FProb(R). The re-
sulting possible worlds are

S1 Toss Face

1 H
2 H

S2 Toss Face

1 H
2 T

S3 Toss Face

1 T
2 H

S4 Toss Face

1 T
2 T

with probabilities p[1] = p · .4
.4+.6 ·

.4
.4+.6 = .16, p[2] = p[3] = .24, and p[4] = .36. 2

The fragment of probabilistic WSA which excludes the difference operation is called
positive probabilistic WSA.

Computing possible and certain tuples is redundant with conf:

poss(R) := πsch(R)(conf(R))

cert(R) := πsch(R)(σP=1(conf(R)))

Example 4.2 A bag of coins contains two fair coins and one double-headed coin. We
take one coin out of the bag but do not look at its two faces to determine its type (fair
or double-headed) for certain. Instead we toss the coin twice to collect evidence about its
type.

We start out with a complete database (i.e., a relational database, or a probabilistic
database with one possible world of probability 1) consisting of three relations, Coins, Faces,
and Tosses (see Figure 1 for all tables used in this example). We first pick a coin from the
bag and model that the coin be either fair or double-headed. In probabilistic WSA this is
expressed as

R := repair-key∅@Count(Coins).

This results in a probabilistic database of two possible worlds,

{〈Coins,Faces, Rf , pf = 2/3〉, 〈Coins,Faces, Rdh, pdh = 1/3〉}.

6

Coins Type Count

fair 2
2headed 1

Faces Type Face FProb

fair H .5
fair T .5

2headed H 1

Tosses Toss

1
2

Rf Type

fair

Rdh Type

2headed

Sf.HH Type Toss Face

fair 1 H
fair 2 H

Sf.HT Type Toss Face

fair 1 H
fair 2 T

Sdh Type Toss Face

2headed 1 H
2headed 2 H

pf.HH = 1/6 pf.HT = 1/6 pdh = 1/3

Sf.TH Type Toss Face

fair 1 T
fair 2 H

Sf.TT Type Toss Face

fair 1 T
fair 2 T

pf.TH = 1/6 pf.TT = 1/6

Ev Toss Face

1 H
2 H

Q Type P

fair (1/6)/(1/2) = 1/3
2headed (1/3)/(1/2) = 2/3

Figure 1: Tables of Example 4.2.

The possible outcomes of tossing the coin twice can be modeled as

S := repair-keyToss@FProb(R ⊲⊳ Faces × Tosses).

This turns the two possible worlds into five, since there are four possible outcomes of tossing
the fair coin twice, and only one for the double-headed coin.

Let T := πToss,Face(S). The posterior probability that a coin of type x was picked, given
the evidence Ev (see Figure 1) that both tosses result in H, is

Pr[x ∈ R | T = Ev] =
Pr[x ∈ R ∧ T = Ev]

Pr[T = Ev]
.

Let A be a relational algebra expression for the Boolean query T = Ev. Then we can
compute a table of pairs 〈x,Pr[x ∈ R | T = Ev]〉 as

Q := πType,P1/P2→P (ρP→P1
(conf(R×A))× ρP→P2

(conf(A))).

The prior probability that the chosen coin was fair was 2/3; after taking the evidence
from two coin tosses into account, the posterior probability Pr[the coin is fair | both tosses
result in H] is only 1/3. Given the evidence from the coin tosses, the coin is now more likely
to be double-headed. 2

Example 4.3 We redefine the query of Example 4.2 such that repair-key is only applied
to certain relations. Starting from the database obtained by computing R, with its two
possible worlds, we perform the query S0 := repair-keyType,Toss@FProb(Faces × Tosses) to
model the possible outcomes of tossing the chosen coin twice. The probabilistic database
representing these repairs consists of eight possible worlds, with the two possible R relations

7

of Example 4.2 and, independently, four possible S0 relations. Let S := R ⊲⊳ S0. While we
now have eight possible worlds rather than five, the four worlds in which the double-headed
coin was picked all agree on S with the one world in which the double-headed coin was
picked in Example 4.2, and the sum of their probabilities is the same as the probability of
that world. It follows that the new definition of S is equivalent to the one of Example 4.2
and the rest of the query is the same. 2

Discussion The repair-key operation admits an interesting class of queries: Like in Ex-
ample 4.2, we can start with a probabilistic database of prior probabilities, add further
evidence (in Example 4.2, the result of the coin tosses) and then compute interesting pos-
terior probabilities. The adding of further evidence may require extending the hypothesis
space first. For this, the repair-key operation is essential. Even though our goal is not to
update the database, we have to be able to introduce uncertainty just to be able to model
new evidence – say, experimental data. Many natural and important probabilistic database
queries cannot be expressed without the repair-key operation. The coin tossing example
was admittedly a toy example (though hopefully easy to understand). Real applications
such as diagnosis or processing scientific data involve technically similar questions.

Regarding our desiderata, it is quite straightforward to see that probabilistic WSA is
generic (3): see also the proof for the non-probabilistic language in [6]. It is clearly a data
transformation query language (4) that supports powerful queries for defining databases.
The repair-key operation is our construct for uncertainty introduction (5). The evaluation
efficiency (1) of probabilistic WSA is studied in Section 6. The expressiveness desideratum
(2) is discussed next.

An expressiveness yardstick In [6] a non-probabilistic version of world-set algebra is
introduced. It replaces the confidence operation with an operation poss for computing possi-
ble tuples. Using poss, repair-key, and the operations of relational algebra, powerful queries
are expressible. For instance, the certain answers of a query on an uncertain database can
be computed using poss and difference. Compared to the poss operation described above,
the operation of [6] is more powerful. The syntax is poss ~A(Q), where ~A is a set of column
names of Q. The operation partitions the set of possible worlds into the groups of those
worlds that agree on π ~A(Q). The result in each world is the set of tuples possible in Q
within the world’s group. Thus, this operation supports the grouping of possible worlds
just like the group-by construct in SQL supports the grouping of tuples.

The main focus of [6] is to study the fragment of (non-probabilistic) WSA in which
repair-key is replaced by the choice-of operation, definable as choice-of ~A@P (R) := R ⊲⊳
repair-key∅@P (π ~A,P (R)). The choice-of operation introduces uncertainty like the repair-key
operation, but can only cause a polynomial, rather than exponential, increase of the number
of possible worlds. This language has the property that query evaluation on enumerative
representations of possible worlds is in PTIME (see Section 6 for more on this). Moreover, it
is conservative over relational algebra in the sense that any query that starts with a certain
database (a classical relational database) and produces a certain database is equivalent to
a relational algebra query and can be efficiently rewritten into relational algebra. This is
a nontrivial result, because in this language we can produce uncertain intermediate results
consisting of many possible worlds using the choice-of operator. This allows us to express
and efficiently answer hypothetical (what-if) queries.

(Full non-probabilistic) WSA consists of the relational algebra operations, repair-key,

8

and poss ~A. In [21], it is shown that WSA precisely captures second-order logic. Leaving
aside inessential details about interpreting second-order logic over uncertain databases – it
can be done in a clean way – this result shows that a query is expressible in WSA if and
only if it is expressible in second-order logic. WSA seems to be the first algebraic (i.e.,
variable and quantifier-free) language known to have exactly the same expressive power as
second-order logic.

More importantly for us, it can be argued that this establishes WSA as the natural
analog of relational algebra for uncertain databases. Indeed, while it is well known that
useful queries (such as transitive closure or counting queries, cf. [1]) cannot be expressed in
it, relational algebra is a very popular expressiveness yardstick for relational query languages
(and query languages that are as expressive as relational algebra are called relationally
complete). Relational algebra is also exactly as expressive as the domain-independent first-
order queries [1], also known as the relational calculus. Second-order logic is just first-order
logic extended by (existential) quantification over relations (“Does there exist a relation R
such that φ holds?”, where φ is a formula). This is the essence of (what-if) reasoning over
uncertain data. For example, the query of Example 4.2 employed what-if reasoning over
relations twice via the repair-key operation, first considering alternative choices of coin and
then alternative outcomes to coin tossing experiments.

It is unknown whether probabilistic WSA as defined in this article can express all
the queries of WSA (with poss ~A). Given the known data complexity bounds for the two
languages (see Section 6) alone, there is no reason to assume that this is not the case. On
the other hand, it seems unlikely, and a mapping from WSA to probabilistic WSA, if it
exists, must be nontrivial.

It would be easy to define a sufficiently strong extension of probabilistic WSA by just
generalizing conf to a world-grouping conf ~A operation. In this article, this is not done
because we do not know how to obtain any even just moderately efficient implementation
of this operation (or of poss ~A) on succinct data representations.

5 Representing Probabilistic Data

This section discusses the method used for representing and storing probabilistic data and
correlations in MayBMS. We start by motivating the problem of finding a practical repre-
sentation system.

Example 5.1 Consider a census scenario, in which a large number of individuals manually
fill in forms. The data in these forms subsequently has to be put into a database, but no
matter whether this is done automatically using OCR or by hand, some uncertainty may
remain about the correct values for some of the answers. Below are two simple filled in
forms. Each one contains the social security number, name, and marital status of one
person.

9

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single
 (2) married

(3) divorced
 (4) widowed

(1) single
 (2) married

(3) divorced
 (4) widowed

The first person, Smith, seems to have checked marital status “single” after first mis-
takenly checking “married”, but it could also be the opposite. The second person, Brown,
did not answer the marital status question. The social security numbers also have several
possible readings. Smith’s could be 185 or 785 (depending on whether Smith originally is
from the US or from Europe) and Brown’s may either be 185 or 186.

In an SQL database, uncertainty can be managed using null values, using a table

(TID) SSN N M

t1 null Smith null
t2 null Brown null

Using nulls, information is lost about the values considered possible for the various
fields. Moreover, it is not possible to express correlations such as that, while social security
numbers may be uncertain, no two distinct individuals can have the same. In this example,
we can exclude the case that both Smith and Brown have social security number 185.
Finally, we cannot store probabilities for the various alternative possible worlds. 2

This leads to three natural desiderata for a representation system: (*) Expressiveness,
that is, the power to represent all (relevant) probabilistic databases, (*) succinctness, that
is, space-efficient storage of the uncertain data, and (*) efficient real-world query processing.

Often there are many rather (but not quite) independent local alternatives in proba-
bilistic data, which multiply up to a very large number of possible worlds. For example, the
US census consists of many dozens of questions for about 300 million individuals. Suppose
forms are digitized using OCR and the resulting data contains just two possible readings
for 0.1% of the answers before cleaning. Then, there are on the order of 210,000,000 possible
worlds, and each one will take close to one Terabyte of data to store. Clearly, we need
a way of representing this data that is much better than a naive enumeration of possible
worlds.

Also, the repair-key operator of probabilistic world-set algebra in general causes an
exponential increase in the number of possible worlds.

There is a trade-off between succinctness on one hand and efficient processing on
the other. Computing confidence conf(Q) of conjunctive queries Q on tuple-independent
databases is #P-hard – one such hard query [13] (in datalog notation [1]) is

Q← R(x), S(x, y), T (y).

At the same time, much more expressive queries can be evaluated efficiently on nonsuccinct
representations (enumerations of possible worlds) [6]. Query evaluation in probabilistic
databases is not hard because of the presence of probabilities, but because of the succinct
storage of alternative possible worlds! We can still have the goal of doing well in practice.

10

Conditional tables MayBMS uses a purely relational representation system for proba-
bilistic databases called U-relational databases, which is based on probabilistic versions of
the classical conditional tables (c-tables) of the database literature [18]. Conditional tables
are a relational representation system based on the notion of labeled null values or variables,
that is, null values that have a name. The name makes it possible to use the same variable
x in several fields of a database, indicating that the value of x is unknown but must be the
same in all those fields in which x occurs. Tables with variables are also known as v-tables.

Formally, c-tables are v-tables extended by a column for holding a local condition. That
is, each tuple of a c-table has a Boolean condition constructed using “and”, “or”, and “not”
from atomic conditions of the form x = c or x = y, where c are constants and x and y
are variables. Possible worlds are determined by functions θ that map each variable that
occurs in at least one of the local conditions in the c-tables of the database to a constant.
The database in that possible world is obtained by (1) selecting those tuples whose local
condition φ satisfies the variable assignment θ, i.e., that becomes true if each variable x in
φ is replaced by θ(x), (2) replacing all variables y in the value fields of these tuples by θ(y),
and (3) projecting away the local condition column.

Conditional tables are sometimes defined to include a notion of global condition, which
we do not use: We want each probabilistic database to have at least one possible world.

Conditional tables are a so-called strong representation system: They are closed under
the application of relational algebra queries. The set of worlds obtained by evaluating a
relational algebra query in each possible world represented by a conditional table can again
be straightforwardly represented by a conditional table. Moreover, the local conditions are
in a sense the most natural and simple formalism possible to represent the result of queries
on data with labeled nulls. The local conditions just represent the information necessary
to preserve correctness and can also be understood to be just data provenance information
[10].

U-Relational Databases In our model, probabilistic databases are finite sets of possible
worlds with probability weights. It follows that each variable naturally has a finite domain,
the set of values it can take across all possible worlds. This has several consequences. First,
variables can be considered finite random variables. Second, only allowing for variables
to occur in local conditions, but not in attribute fields of the tuples, means no restriction
of expressiveness. Moreover, we may assume without loss of generality that each atomic
condition is of the form x = c (i.e., we never have to compare variables).

If we start with a c-table in which each local condition is a conjunction of no more than
k atomic conditions, then a positive relational algebra query on this uncertain database
will result in a c-table in which each local condition is a conjunction of no more than k′

atoms, where k′ only depends on k and the query, but not on the data. If k is small, it is
reasonable to actually hard-wire it in the schema, and represent local conditions by k pairs
of columns to store atoms of the form x = c.

These are the main ideas of our representation system, U-relations. Random variables
are assumed independent in the current MayBMS system, but as we will see, this means no
restriction of generality. Nevertheless, it is one goal of future work to support graphical mod-
els for representing more correlated joint probability distributions below our U-relations.
This would allow us to represent learned distributions in the form of e.g. Bayesian networks
directly in the system (without the need to map them to local conditions) and run queries
on top, representing the inferred correlations using local conditions. The latter seem to be

11

better suited for representing the incremental correlations constructed by queries.
One further idea employed in U-relational databases is to use vertical partitioning [9, 26]

for representing attribute-level uncertainty , i.e., to allow to decompose tuples in case several
fields of a tuple are independently uncertain.

Example 5.2 The following set of tables is a U-relational database representation for the
census data scenario of Example 5.1, extended by suitable probabilities for the various
alternative values the fields can take (represented by table W).

UR[SSN] V D TID SSN

x 1 t1 185
x 2 t1 785
y 1 t2 185
y 2 t2 186

UR[M] V D TID M

v 1 t1 1
v 2 t1 2
w 1 t2 1
w 2 t2 2
w 3 t2 3
w 4 t2 4

UR[N] TID N

t1 Smith
t2 Brown

W V D P

x 1 .4
x 2 .6

y 1 .7
y 2 .3

v 1 .8
v 2 .2

w 1 .25
w 2 .25
w 3 .25
w 4 .25

Formally, a U-relational database consists of a set of independent random variables with
finite domains (here, x, y, v, w), a set of U-relations, and a ternary table W (the world-table)
for representing distributions. The W table stores, for each variable, which values it can
take and with what probability. The schema of each U-relation consists of a set of pairs
(Vi,Di) of condition columns representing variable assignments and a set of value columns
for representing the data values of tuples.

The semantics of U-relational databases is as follows. Each possible world is identified
by a valuation θ that assigns one of the possible values to each variable. The probability
of the possible world is the product of weights of the values of the variables. A tuple of
a U-relation, stripped of its condition columns, is in a given possible world if its variable
assignments are consistent with θ. Attribute-level uncertainty is achieved through vertical
decompositioning, so one of the value columns is used for storing tuple ids and undoing the
vertical decomposition on demand.

Example 5.3 Consider the U-relational database of Example 5.2 and the possible world

θ = {x 7→ 1, y 7→ 2, v 7→ 1, w 7→ 1}.

The probability weight of this world is .4·.3·.8·.25 = .024. By removing all the tuples whose
condition columns are inconsistent with θ and projecting away the condition columns, we
obtain the relations

R[SSN] TID SSN

t1 185
t2 186

R[M] TID M

t1 1
t2 1

R[N] TID N

t1 Smith
t2 Brown

12

which are just a vertically decomposed version of R in the chosen possible world. That is,
R is R[SSN] ⊲⊳ R[M] ⊲⊳ R[N] in that possible world. 2

Properties of U-relations U-relational databases are a complete representation sys-
tem for (finite) probabilistic databases [3]. This means that any probabilistic database
can be represented in this formalism. In particular, it follows that U-relations are closed
under query evaluation using any generic query language, i.e., starting from a represented
database, the query result can again be represented as a U-relational database. Complete-
ness also implies that any (finite) correlation structure among tuples can be represented,
despite the fact that we currently assume that the random variables that our correlations are
constructed from (using tuple conditions) are independent: The intuition that some form
of graphical model for finite distributions may be more powerful (i.e., able to represent
distributions that cannot be represented by U-relations) is false.

Historical Note The first prototype of MayBMS [5, 7, 25] did not use U-relations for
representations, but a different representation system called world-set decompositions [5].
These representations are based on factorizations of the space of possible worlds. They
can also be thought of as shallow Bayesian networks. The problem with this approach
is that some selection operations can cause an exponential blowup of the representations.
This problem is not shared by U-relations, even though they are strictly more succinct
than world-set decompositions. This was the reason for introducing U-relations in [3] and
developing a new prototype of MayBMS based on U-relations.

6 Conceptual Query Evaluation, Rewritings, and Asymp-

totic Efficiency

This section gives a complete solution for efficiently evaluating a large fragment of proba-
bilistic world-set algebra using relational database technology. Then we discuss the evalu-
ation of the remaining operations of probabilistic WSA, namely difference and tuple confi-
dence. Finally, an overview of known worst-case computational complexity results is given.

Translating queries down to the representation relations Let rep be the repre-
sentation function, which maps a U-relational database to the set of possible worlds it
represents. Our goal is to give a reduction that maps any positive relational algebra query
Q over probabilistic databases represented as U-relational databases T to an equivalent
positive relational algebra query Q of polynomial size such that

rep(Q(T)) = {Q(Ai) | Ai ∈ rep(T)}

where the Ai are relational database instances (possible worlds) or, as a commutative
diagram,

T Q(T)

{A1, . . . ,An} {Q(A1), . . . , Q(An)}

rep

Q

Q

rep

13

The following is such a reduction, which maps the operations of positive relational
algebra, poss, and repair-key to relational algebra over U-relational representations:

[[R × S]] := π(UR.V D∪US .V D)→V D,sch(R),sch(S)(

UR ⊲⊳UR.V D consistent withUS .V D
US)

[[σφR]] := σφ(UR)

[[π ~BR]] := πV D, ~B(R)

[[R ∪ S]] := UR ∪ US

[[poss(R)]] := πsch(R)(UR).

The consistency test for conditions can be expressed simply using Boolean conditions (see
Example 6.2, and [3]). Note that the product operation, applied to two U-relations of k
and l (Vi,Di) column pairs, respectively, returns a U-relation with k + l (Vi,Di) column
pairs.

For simplicity, let us assume that the elements of π〈 ~A〉(UR) are not yet used as variable
names. Moreover, let us assume that the B value column of UR, which is to provide weights
for the alternative values of the columns sch(R) − (~A ∪ B) for each tuple ~a in π〈 ~A〉(UR),

are probabilities, i.e., sum up to one for each ~a and do not first have to be normalized
as described in the definition of the semantics of repair-key in Section 4. The operation
S := repair-key ~A@B(R) for complete relation R is translated as

US := π〈 ~A〉→V,〈(sch(R)− ~A)−{B}〉→D,sch(R)UR

with
W := W ∪ π〈 ~A〉→V,〈(sch(R)− ~A)−{B}〉→D,B→PUR.

Here, 〈·〉 turns tuples of values into atomic values that can be stored in single fields.
That is, repair-key starting from a complete relation is just a projection/copying of

columns, even though we may create an exponential number of possible worlds.

Example 6.1 Consider again the relation R of Example 4.1, which represents information
about tossing a biased coin twice, and the query S := repair-keyToss@FProb(R). The result
is

US V D Toss Face FProb

1 H 1 H .4
1 T 1 T .6
2 H 2 H .4
2 T 2 T .6

W V D P

1 H .4
1 T .6
2 H .4
2 T .6

as a U-relational database. 2

The projection technique only works if the relation that repair-key is applied to is
certain. However, this means no loss of generality (cf. [21], and see also Example 4.3).

The next example demonstrates the application of the rewrite rules to compile a query
down to relational algebra on the U-relations.

Example 6.2 We revisit our census example with U-relations UR[SSN] and UR[N]. We ask
for possible names of persons who have SSN 185, poss(πN (σSSN=185(R))). To undo the

14

vertical partitioning, the query is evaluated as poss(πN (σSSN=185(R[SSN] ⊲⊳ R[N]))). We
rewrite the query using our rewrite rules into πN (σSSN=185(UR[SSN] ⊲⊳ψ∧φ UR[N])), where
ψ ensures that we only generate tuples that occur in some worlds,

ψ := (UR[SSN].V = UR[N].V ⇒ UR[SSN].D = UR[N].D),

and φ ensures that the vertical partitioning is correctly undone,

φ := (UR[SSN].T ID = UR[N].T ID).
2

Properties of the relational-algebra reduction The relational algebra rewriting down
to positive relational algebra on U-relations has a number of nice properties. First, since
relational algebra has PTIME (even AC0) data complexity, the query language of positive
relational algebra, repair-key, and poss on probabilistic databases represented by U-relations
has the same. The rewriting is in fact a parsimonious translation: The number of alge-
bra operations does not increase and each of the operations selection, projection, join, and
union remains of the same kind. Query plans are hardly more complicated than the input
queries. As a consequence, we were able to observe that off-the-shelf relational database
query optimizers do well in practice [3].

Thus, for all but two operations of probabilistic world-set algebra, it seems that there
is a very efficient solution that builds on relational database technology. These remaining
operations are confidence computation and relational algebra difference.

Approximate confidence computation To compute the confidence in a tuple of data
values occurring possibly in several tuples of a U-relation, we have to compute the prob-
ability of the disjunction of the local conditions of all these tuples. We have to eliminate
duplicate tuples because we are interested in the probability of the data tuples rather than
some abstract notion of tuple identity that is really an artifact of our representation. That
is, we have to compute the probability of a DNF, i.e., the sum of the weights of the worlds
identified with valuations θ of the random variables such that the DNF becomes true under
θ. This problem is #P-complete [16, 13]. The result is not the sum of the probabilities of
the individual conjunctive local conditions, because they may, intuitively, “overlap”.

Example 6.3 Consider a U-relation with schema {V,D} (representing a nullary relation)
and two tuples 〈x, 1〉, and 〈y, 1〉, with theW relation from Example 5.2. Then the confidence
in the nullary tuple 〈〉 is Pr[x 7→ 1∨ y 7→ 1] = Pr[x 7→ 1]+ Pr[y 7→ 1]−Pr[x 7→ 1∧ y 7→ 1] =
.82. 2

Confidence computation can be efficiently approximated by Monte Carlo simulation
[16, 13, 22]. The technique is based on the Karp-Luby fully polynomial-time randomized
approximation scheme (FPRAS) for counting the number of solutions to a DNF formula
[19, 20, 12]. There is an efficiently computable unbiased estimator that in expectation
returns the probability p of a DNF of n clauses (i.e., the local condition tuples of a Boolean
U-relation) such that computing the average of a polynomial number of such Monte Carlo
steps (= calls to the Karp-Luby unbiased estimator) is an (ǫ, δ)-approximation for the
probability: If the average p̂ is taken over at least ⌈3 · n · log(2/δ)/ǫ2⌉ Monte Carlo steps,
then Pr

[

|p − p̂| ≥ ǫ · p
]

≤ δ. The paper [12] improves upon this by determining smaller
numbers (within a constant factor from optimal) of necessary iterations to achieve an (ǫ, δ)-
approximation.

15

Avoiding the difference operation Difference R−S is conceptually simple on c-tables.
Without loss of generality, assume that S does not contain tuples 〈~a, ψ1〉, . . . , 〈~a, ψn〉 that
are duplicates if the local conditions are disregarded. (Otherwise, we replace them by
〈~a, ψ1 ∨ · · · ∨ ψn〉.) For each tuple 〈~a, φ〉 of R, if 〈~a, ψ〉 is in S then output 〈~a, φ ∧ ¬ψ〉;
otherwise, output 〈~a, φ〉. Testing whether a tuple is possible in the result of a query involving
difference is already NP-hard [2]. For U-relations, we in addition have to turn φ∧¬ψ into a
DNF to represent the result as a U-relation. This may lead to an exponentially large output
and a very large number of ~V ~D columns may be required to represent the conditions. For
these reasons, MayBMS currently does not implement the difference operation.

In many practical applications, the difference operation can be avoided. Difference is
only hard on uncertain relations. On such relations, it can only lead to displayable query
results in queries that close the possible worlds semantics using conf, computing a single
certain relation. Probably the most important application of the difference operation is for
encoding universal constraints, for example in data cleaning. But if the confidence operation
is applied on top of a universal query, there is a trick that will often allow to rewrite the
query into an existential one (which can be expressed in positive relational algebra plus
conf, without difference) [22].

Example 6.4 The example uses the census scenario and the uncertain relation R[SSN]
with columns TID and SSS discussed earlier; below we will call this relation just simply R.
Consider the query of finding, for each TID ti and SSN s, the confidence in the statement
that s is the correct SSN for the individual associated with the tuple identified by ti,
assuming that social security numbers uniquely identify individuals, that is, assuming that
the functional dependency SSN → TID (subsequently called ψ) holds. In other words, the
query asks, for each TID ti and SSN s, to find the probability Pr[φ | ψ], where φ(ti, s) =
∃t ∈ R t.T ID = ti ∧ t.SSN = s. Constraint ψ can be thought of as a data cleaning
constraint that ensures that the SSN fields in no two distinct census forms (belonging to
two different individuals) are interpreted as the same number.

We compute the desired conditional probabilities, for each possible pair of a TID and
an SSN, as Pr[φ | ψ] = Pr[φ ∧ ψ]/Pr[ψ]. Here φ is existential (expressible in positive
relational algebra) and ψ is an equality-generating dependency (i.e., a special universal
query) [1]. The trick is to turn relational difference into the subtraction of probabilities,
Pr[φ ∧ ψ] = Pr[φ] − Pr[φ ∧ ¬ψ] and Pr[ψ] = 1 − Pr[¬ψ], where ¬ψ = ∃t, t′ ∈ R t.SSN =
t′.SSN∧t.T ID 6= t′.T ID is existential (with inequalities). Thus ¬ψ and φ∧¬ψ are express-
ible in positive relational algebra. This works for a considerable superset of the equality-
generating dependencies [22], which in turn subsume useful data cleaning constraints, such
as conditional functional dependencies [11].

Let R¬ψ be the relational algebra expression for ¬ψ,

π∅(R ⊲⊳TID=TID′∧SSN 6=SSN ′ ρTID→TID′;SSN→SSN ′(R)),

and let S be

ρP→Pφ(conf(R)) ⊲⊳ ρP→Pφ∧¬ψ

(

conf(R×R¬ψ) ∪

πTID,SSN,0→P (conf(R)− conf(R×R¬ψ))
)

× ρP→P¬ψ
(conf(R¬ψ)).

The overall example query can be expressed as

T := πTID,SSN,(Pφ−Pφ∧¬ψ)/(1−P¬ψ)→P (S).

For the example table R given above, S and T are

16

Language Fragment Complexity Reference

On non-succinct representations:

RA + conf + possible + choice-of in PTIME (SQL) [22]

RA + possible + repair-key NP-&coNP-hard, [6]
in PNP [21]

RA + possibleQ + repair-key PHIER-compl. [21]

On U-relations:

Pos.RA + repair-key + possible in AC0 [3]

RA + possible co-NP-hard Abiteboul et al. [2]

Conjunctive queries + conf #P-hard Dalvi, Suciu [13]

Probabilistic WSA in P#P [22]

Pos.RA + repair-key + possible
+ approx.conf + egds in PTIME [22]

Figure 2: Complexity results for (probabilistic) world-set algebra. RA denotes relational
algebra.

S TID SSN Pφ Pφ∧¬ψ P¬ψ

t1 185 .4 .28 .28
t1 785 .6 0 .28
t2 185 .7 .28 .28
t2 186 .3 0 .28

T TID SSN P

t1 185 1/6
t1 785 5/6
t2 185 7/12
t2 186 5/12

Complexity Overview Figure 2 gives an overview over the known complexity results for
the various fragments of probabilistic WSA. Two different representations are considered,
non-succinct representations that basically consist of enumerations of the possible worlds
[6] and succinct representations: U-relational databases. In the non-succinct case, only the
repair-key operation, which may cause an exponential explosion in the number of possible
worlds, makes queries hard. All other operations, including confidence computation, are
easy. In fact, we may add much of SQL – for instance, aggregations – to the language and
it still can be processed efficiently, even by a reduction of the query to an SQL query on a
suitable non-succinct relational representation.

When U-relations are used as representation system, the succinctness causes both dif-
ference [2] and confidence computation [13] independently to make queries NP-hard. Full
probabilistic world-set algebra is essentially not harder than the language of [13], even
though it is substantially more expressive.

It is worth noting that repair-key by itself, despite the blowup of possible worlds, does
not make queries hard. For the language consisting of positive relational algebra, repair-key,
and poss, we have shown by construction that it has PTIME complexity: We have given a
positive relational algebra rewriting to queries on the representations earlier in this section.
Thus queries are even in the highly parallelizable complexity class AC0.

The final result in Figure 2 concerns the language consisting of the positive relational
algebra operations, repair-key, (ǫ, δ)-approximation of confidence computation, and the
generalized equality generating dependencies of [22] for which we can rewrite difference of
uncertain relations to difference of confidence values (see Example 6.4). The result is that
queries of that language that close the possible worlds semantics – i.e., that use conf to

17

compute a certain relation – are in PTIME overall. In [22], a stronger result than just the
claim that each of the operations of such a query is individually in PTIME is proven. It is
shown that, leaving aside a few pitfalls, global approximation guarantees can be achieved
in polynomial time, i.e., results of entire queries in this language can be approximated
arbitrarily closely in polynomial time.

This is a non-obvious result because the query language is compositional and selections
can be made based on approximated confidence values. In a query σP=0.5(approx.conf(R)),
an approximated P value will almost always be slightly off, even if the exact P value is
indeed 0.5, and the selection of tuples made based on whether P is 0.5 is nearly completely
arbitrary. In [22, 15], it is shown that this is essentially an unsurmountable problem. All we
can tell is that if P is very different from 0.5, then the probability that the tuple should be
in the answer is very small. If atomic selection conditions on (approximated) probabilities
usually admit ranges such as P < 0.5 or 0.4 < P < 0.6, then query approximation will
nevertheless be meaningful: we are able to approximate query results unless probability
values are very close or equal to the constants used as interval bounds. (These special
points are called singularities in [22].)

The results of [22] have been obtained for powerful conditions that may use arithmetics
over several approximated attributes, which is important if conditional probabilities have to
be checked in selection conditions or if several probabilities have to be compared. The algo-
rithm that gives overall (ǫ, δ)-approximation guarantees in polynomial time is not strikingly
practical. Further progress on this has been made in [15], but more work is needed.

7 The MayBMS Query and Update Language

This section describes the query and update language of MayBMS, which is based on SQL.
In fact, our language is a generalization of SQL on classical relational databases. To simplify
the presentation, a fragment of the full language supported in MayBMS is presented here.

The representation system used in MayBMS, U-relations, has classical relational tables
as a special case, which we will call typed-certain (t-certain) tables in this section. Tables
that are not t-certain are called uncertain. Note that this notion of certainty is purely
syntactic, and cert(R) = πsch(R)(σP=1(conf(R))) may well be equal to the projection of
a U-relation UR to its attribute (non-condition) columns despite R not being t-certain
according to this definition.

Aggregates In MayBMS, full SQL is supported on t-certain tables. Beyond t-certain ta-
bles, some restrictions are in place to assure that query evaluation is feasible. In particular,
we do not support the standard SQL aggregates such as sum or count on uncertain rela-
tions. This can be easily justified: In general, these aggregates will produce exponentially
many different numerical results in the various possible worlds, and there is no way of rep-
resenting these results efficiently. However, MayBMS supports a different set of aggregate
operations on uncertain relations. These include the computations of expected sums and
counts (using aggregates esum and ecount).

Moreover, the confidence computation operation is an aggregate in the MayBMS query
language. This is a deviation from the language flavor of our algebra, but there is a
justification for this. The algebra presented earlier assumed a set-based semantics for
relations, where operations such as projections automatically remove duplicates. In the
MayBMS query language, just like in SQL, duplicates have to be eliminated explicitly, and

18

confidence is naturally an aggregate that computes a single confidence value for each group
of tuples that agree on (a subset of) the non-condition columns. By using aggregation
syntax for conf and not supporting select distinct on uncertain relations, we avoid a
need for conditions beyond the special conjunctions that can be stored with each tuple in
U-relations.

All the aggregates on uncertain tables produce t-certain tables.

Duplicate tuples SQL databases in general support multiset tables, i.e., tables in which
there may be duplicate tuples. There is no conceptual difficulty at all in supporting mul-
tiset U-relations. In fact, since U-relations are just relations in which some columns are
interpreted to have a special meaning (conditions), just storing them in a standard rela-
tional database management system (which supports duplicates in tables) yields support
for multiset U-relations.

Syntax The MayBMS query language is compositional and built from uncertain and t-
certain queries. The uncertain queries are those that produce a possibly uncertain relation
(represented by a U-relation with more than zero V and D columns). Uncertain queries
can be constructed, inductively, from t-certain queries, select-from-where queries over
uncertain tables, the multiset union of uncertain queries (using the SQL union construct),
and statements of the form

repair key <attributes> in <t-certain-query>

weight by <attribute>

Note that repair-key is a query, rather than an update statement. The select-from-where
queries may use any t-certain subqueries in the conditions, plus uncertain subqueries in
atomic conditions of the form

<tuple> in <uncertain-query>

that occur positively in the condition. (That is, if the condition is turned into DNF, these
literals are not negated.)

The t-certain queries (i.e., queries that produce a t-certain table) are given by

• all constructs of SQL on t-certain tables and t-certain subqueries, extended by a new
aggregate

argmax(<argument-attribute>, <value-attribute>)

which outputs all the argument-attribute values in the current group (determined
by the group-by clause) whose tuples have a maximum value-attribute value within
the group. Thus, this is the typical argmax construct from mathematics added as an
SQL extension.

• select-from-where-group-by on uncertain queries using aggregates conf, esum,
and ecount, but none of the standard SQL aggregates. There is an exact and an
approximate version of the conf aggregate. The latter takes two parameters ǫ and δ
(see the earlier discussion of the Karp-Luby FPRAS).

19

The aggregates esum and ecount compute expected sums and counts across groups
of tuples. While it may seem that these aggregates are at least as hard as confidence
computation (which is #P-hard), this is in fact not so. These aggregates can be efficiently
computed exploiting linearity of expectation. A query

select A, esum(B) from R group by A;

is equivalent to a query

select A, sum(B * P) from R’ group by A;

where R’ is obtained from the U-relation of R by replacing each local condition V1,D1, . . . ,
Vk, Dk by the probability Pr[V1 = D1 ∧ · · · ∧Vk = Dk], not eliminating duplicates. That is,
expected sums can be computed efficiently tuple by tuple, and only require to determine
the probability of a conjunction, which is easy, rather than a DNF of variable assignments
as in the case of the conf aggregate. The ecount aggregate is a special case of esum applied
to a column of ones.

Example 7.1 The query of Example 4.2 can be expressed in the query language of MayBMS
as follows. Let R be repair key in Coins weight by Count and let S be

select R.Type, Toss, Face

from (repair key Type, Toss in (select * from Faces, Tosses)

weight by FProb) S0, R

where R.Type = S0.Type;

It is not hard to verify that πToss,Face(S) 6= Ev exactly if there exist tuples ~s ∈ S,~t ∈ Ev
such that ~s.Toss = ~t.Toss and ~s.Face 6= ~t.Face. Let C be

select S.Type from S, Ev

where S.Toss = Ev.Toss and S.Face <> Ev.Face;

Then we can compute Q using the trick of Example 6.4 as

select Type, (P1-P2)/(1-P3) as P

from (select Type, conf() as P1 from S group by Type) Q1,

((select Type, conf() as P2 from C group by Type)

union

(

(select Type, 0 as P2 from Coins)

except

(select Type, 0 as P2 from

(select Type, conf() from C group by Type) Dummy)

)) Q2,

(select conf() as P3 from C) Q3

where Q1.Type = Q2.Type;

The argmax aggregate can be used to compute maximum-a-posteriori (MAP) and
maximum-likelihood estimates. For example, The MAP coin type

argmaxType Pr[evidence is twice heads ∧ coin type is Type]

20

can be computed as select argmax(Type, P) from Q because the normalizing factor
(1-P3) has no impact on argmax. Thus, the answer in this example is the double-headed
coin. (See table Q of Figure 1: The fair coin has P = 1/3, while the double-headed coin
has P = 2/3.)

The maximum likelihood estimate

argmaxType Pr[evidence is twice heads | coin type is Type]

can be computed as

select argmax(Q.Type, Q.P/R’.P)

from Q, (select Type, conf() as P from R) R’

where Q.Type = R’.Type;

Here, again, the result is 2headed, but this time with likelihood 1. (The fair coin has
likelihood 1/4). 2

Updates MayBMS supports the usual schema modification and update statements of
SQL. In fact, our use of U-relations makes this quite easy. An insertion of the form

insert into <uncertain-table> (<uncertain-query>);

is just the standard SQL insertion for tables we interpret as U-relations. Thus, the table
inserted into must have the right number (that is, a sufficient number) of condition columns.
Schema-modifying operations such as

create table <uncertain-table> as (<uncertain-query>);

are similarly straightforward. A deletion

delete from <uncertain-table>

where <condition>;

admits conditions that refer to the attributes of the current tuple and may use t-certain
subqueries. Updates can be thought of as combinations of deletions and insertions, but in
practice there are of course ways of implementing updates much more efficiently.

Conditioning Apart from the basic update operations of SQL, MayBMS also supports an
update operation assert for conditioning, or knowledge compilation. The assert operation
takes a Boolean positive relational algebra query φ in SQL syntax as an argument, i.e., a
select-from-where-union query without aggregation. It conditions the database using this
constraint φ, i.e., conceptually it removes all the possible worlds in which φ evaluates to
false and renormalizes the probabilities so that they sum up to one again.

Formally, the semantics is thus

[[assert(φ)]](W) := {(R1, . . . , Rk, p/p0) | (R1, . . . , Rk, p) ∈W,

(R1, . . . , Rk) � φ, p0 =
∑

(R′

1
,...,R′

k
,p)∈W,(R′

1
,...,R′

k
)�φ

p}.

If the condition is inconsistent with the database, i.e., would delete all possible worlds when
executed, the assert operation fails with an error (and does not modify the database).

21

Example 7.2 Consider the four possible worlds for the R[SSN] relation of the census
example.

R[SSN]1 TID SSN

t1 185
t2 185

R[SSN]2 TID SSN

t1 185
t2 186

R[SSN]3 TID SSN

t1 785
t2 185

R[SSN]4 TID SSN

t1 785
t2 186

To assert the functional dependency R : SSN → TID, which states that no two
individuals can have the same SSN, we can express the functional dependency as a Boolean
query Q and execute assert(Q). This deletes the first of the four worlds and renormalizes
the probabilities to sum up to one. 2

Knowledge compilation using assert has obvious applications in areas such as data
cleaning, where we may start with an uncertain database and then chase [1] a set of integrity
constraints to reduce uncertainty. The assert operation can apply a set of constraints to a
probabilistic database and materialize the cleaned, less uncertain database.

The assert operation is at least as hard as exact confidence operation (it is also practi-
cally no harder [23], and essentially the same algorithms can be used for both problems),
but differently from confidence computation, the result has to be computed exactly and
currently there is no clear notion of useful approximation to a cleaned database.

8 The MayBMS System

The MayBMS system has been under development since 2005 and has undergone several
transformations. From the beginning, our choice was to develop MayBMS as an extension
of the Postgres server backend. Two prototypes have been demonstrated at ICDE 2007 [7]
and VLDB 2007 [8]. Currently, MayBMS is approaching its first release. MayBMS is open
source and the source code is available through

http://maybms.sourceforge.net

The academic homepage of the MayBMS project is at

http://www.cs.cornell.edu/database/maybms/

Test data generators and further resources such as main-memory implementations of
some of our algorithms have been made available through these Web pages as well.

We are aware of several research prototype probabilistic database management systems
that are built as front-end applications of Postgres, but of no other system that aims to
develop a fully integrated system. Our backend is accessible through several APIs, with
efficient internal operators for computing and managing probabilistic data.

22

Representations, relational encoding, and query optimization Our representation
system, U-relations, is basically implemented as described earlier, with one small exception.
With each pair of columns Vi, Di in the condition, we also store a column Pi for the
probability weight of alternative Di for variable Vi, straight from the W relation. While
the operations of relational algebra, as observed earlier, do not use probability values,
confidence computation does. This denormalization (the extension by Pi columns) removes
the need to look up any probabilities in the W table in our exact confidence computation
algorithms.

Our experiments show that the relational encoding of positive relational algebra which is
possible for U-relations is so simple – it is a parsimonious transformation, i.e., the number of
relational algebra operations is not increased – that the standard Postgres query optimizer
actually does well at finding good query plans (see [3]).

Approximate confidence computation MayBMS implements both an approximation
algorithm and several exact algorithms for confidence computation. The approximation
algorithm is a combination of the Karp-Luby unbiased estimator for DNF counting [19, 20]
in a modified version adapted for confidence computation in probabilistic databases (cf.
e.g. [22]) and the Dagum-Karp-Luby-Ross optimal algorithm for Monte Carlo estimation
[12]. The latter is based on sequential analysis and determines the number of invocations of
the Karp-Luby estimator needed to achieve the required bound by running the estimator a
small number of times to estimate its mean and variance. We actually use the probabilistic
variant of a version of the Karp-Luby estimator described in the book [27] which computes
fractional estimates that have smaller variance than the zero-one estimates of the classical
Karp-Luby estimator.

Exact confidence computation Our exact algorithm for confidence computation is
described in [23]. It is based on an extended version of the Davis-Putnam procedure [14]
that is the basis of the best exact Satisfiability solvers in AI. Given a DNF (of which each
clause is a conjunctive local condition), the algorithm employs a combination of variable
elimination (as in Davis-Putnam) and decomposition of the DNF into independent subsets
of clauses (i.e., subsets that do not share variables), with cost-estimation heuristics for
choosing whether to use the former (and for which variable) or the latter.

Example 8.1 Consider the U-relation U representing a nullary table and the W table of
Figure 3. The local conditions of U are Φ = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→
1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}.

The algorithm proceeds recursively. We first choose to exploit the fact that the Φ can
be split into two independent sets, the first using only the variables {x, y, z} and the second
only using {u, v}. We recurse into the first set and eliminate the variable x. This requires
us to consider two cases, the alternative values 1 and 2 for x (alternative 3 does not have
to be considered because in each of the clauses to be considered, x is mapped to either 1 or
2. In the case that x maps to 2, we eliminate x from the set of clauses that are compatible
with the variable assignment x 7→ 2, i.e., the set {{y 7→ 1}, {z 7→ 1}}, and can decompose
exploiting the independence of the two clauses. Once y and z are eliminated, respectively,
the conditions have been reduced to “true”. The alternative paths of the computation tree,
shown in Figure 3, are processed analogously.

On returning from the recursion, we compute the probabilities of the subtrees in the
obvious way. For two independent sets S1, S2 of clauses with probabilities p1 and p2, the

23

U V1 D1 V2 D2

x 1 x 1
x 2 y 1
x 2 z 1
u 1 v 1
u 2 u 2

W V D P

x 1 .1
x 2 .4
x 3 .5
y 1 .2
y 2 .8
z 1 .4
z 2 .6
u 1 .7
u 2 .3
v 1 .5
v 2 .5

0.7578
⊗

0.308
⊕

{x, y, z}

1.0

∅

x
.1
7→ 1

0.52
⊗

x
.4
7→ 2

0.2
⊕

{y}

1.0

∅

y
.2
7→ 1

0.4
⊕

{z}

1.0

∅

z
.4
7→ 1

0.65
⊕

{u, v}

0.5
⊕

u
.7
7→ 1

1.0

∅

v
.5
7→ 1

1.0

∅

u
.3
7→ 2

Figure 3: Exact confidence computation.

probability of S1∪S2 is 1−(1−p1)·(1−p2). For variable elimination branches, the probability
is the sum of the products of the probabilities of the subtrees and the probabilities of the
variable assignments used for elimination.

It is not hard to verify that the probability of Φ, i.e., the confidence in tuple 〈〉, is
0.7578. 2

Our exact algorithm solves a #P-hard problem and exhibits exponential running time
in the worst case. However, like some other algorithms for combinatorial problems, this
algorithm shows a clear easy-hard-easy pattern. Outside a narrow range of variable-to-
clause count ratios, it very pronouncedly outperforms the (polynomial-time) approximation
techniques [23]. It is straightforward to extend this algorithm to condition a probabilistic
database (i.e., to compute “assert”) [23].

Hierarchical queries The tuple-independent databases are those probabilistic databases
in which, for each tuple, a probability can be given such that the tuple occurs in the database
with that probability and the tuples are uncorrelated. It is known since the work of Dalvi
and Suciu [13] that there is a class of conjunctive queries, the hierarchical queries Q, for
which computing conf(Q) exactly on tuple-independent probabilistic databases is feasible
in polynomial time.

In fact, these queries can essentially be computed using SQL queries that involve several
nested aggregate-group-by queries. On the other hand, it was also shown in [13] that for any
conjunctive query Q that is not hierarchical, computing conf(Q) is #P-hard with respect
to data complexity. Dalvi and Suciu introduce the notion of safe plans that are at once
certificates that a query is hierarchical and query plans with aggregation operators that

24

can be used for evaluating the queries.
Dan Olteanu’s group at Oxford has recently extended this work in three ways, and

implemented it in MayBMS [17]. First, the observation is used that in the case that a
query has a safe plan, it is not necessary to use that safe plan for query evaluation. Instead
we can choose our plan from a large set of possible plans, some of which will be much better
and use fewer levels of aggregation than the canonical safe plans of [13]. Second, a special
low-level operator for processing these aggregations has been implemented, which reduces
the number of data scans needed [17]. Finally, the fact is exploited that the #P-hardness
result for any single nonhierarchical query of [13] only applies as long as the problem is that
of evaluating the query on an arbitrary probabilistic database of suitable schema. If further
information about permissible databases is available in the form of functional dependencies
that the databases must satisfy, then a larger class of queries can be processed by our
approach.

Olteanu and Huang [24] have also obtained results on polynomial-time confidence com-
putation on fragments of conjunctive queries with inequalities, using a powerful framework
based on Ordered Binary Decision Diagrams.

Updates, concurrency control and recovery As a consequence of our choice of a
purely relational representation system, these issues cause surprisingly little difficulty. U-
relations are just relational tables and updates are just modifications of these tables that
can be expressed using the standard SQL update operations. However, finding a suitable
programming model and API for efficiently supporting programming access without expos-
ing the user applications to internals of the representation system (which will differ among
the various probabilistic DBMS) is a difficult problem. A full statement of this problem
and some first results can be found in [4].

9 Conclusions

The aim of the MayBMS system is to be the first robust and scalable probabilistic database
system that can be used in real applications. By our choice of running the entire project as
an open-source project with the goal of creating mature code and serious documentation
for developers, we hope to be able to accelerate progress in the field by making a testbed
for new algorithms available to the research community.

Our possibly most important goal is to extend MayBMS to support continuous distri-
butions. The path towards this goal is clearly sketched by our use of, essentially, a class of
conditional tables for data representation. Our representations will not be hard to general-
ize, but some of the advantages of U-relations will be lost. There will be a need for a special
column type “condition” for storing the more general local conditions needed, which has
implications on operator implementations and will require us to study query optimization
closely: We will not be able to rely as much on standard query optimizers to produce good
plans as we currently do.

Another major goal is an extensive and careful experimental comparison of ours ver-
sus the graphical models approach, and to understand where the sweet spots of the two
directions lie. More generally, it will be important to start working on a fair benchmark
for probabilistic databases and, ideally, AI systems, even though it may still be too early
to see the full set of dimensions that the space of systems will have, which is necessary to
be able to define a benchmark that will remain fair and useful for some time.

25

A final grand goal is a query and update language specification that is a widely ac-
ceptable candidate for a future standard. This will be essential for wide acceptance of
probabilistic databases. We expect our past work on the foundations of query algebras
[6, 22, 21] to be useful in such an effort.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] S. Abiteboul, P. Kanellakis, and G. Grahne. “On the Representation and Querying of
Sets of Possible Worlds”. Theor. Comput. Sci., 78(1):158–187, 1991.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. “Fast and Simple Relational Process-
ing of Uncertain Data”. In Proc. ICDE, 2008.

[4] L. Antova and C. Koch. “On APIs for Probabilistic Databases”. In Proc. 2nd In-
ternational Workshop on Management of Uncertain Data, Auckland, New Zealand,
2008.

[5] L. Antova, C. Koch, and D. Olteanu. “10106

Worlds and Beyond: Efficient Represen-
tation and Processing of Incomplete Information”. In Proc. ICDE, 2007.

[6] L. Antova, C. Koch, and D. Olteanu. “From Complete to Incomplete Information and
Back”. In Proc. SIGMOD, 2007.

[7] L. Antova, C. Koch, and D. Olteanu. “MayBMS: Managing Incomplete Information
with Probabilistic World-Set Decompositions”. In Proc. ICDE, 2007.

[8] L. Antova, C. Koch, and D. Olteanu. “Query Language Support for Incomplete Infor-
mation in the MayBMS System”. In Proc. VLDB, 2007.

[9] D. S. Batory. “On Searching Transposed Files”. ACM Trans. Database Syst., 4(4):531–
544, 1979.

[10] O. Benjelloun, A. D. Sarma, C. Hayworth, and J. Widom. “An Introduction to ULDBs
and the Trio System”. IEEE Data Engineering Bulletin, 2006.

[11] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. “Conditional Func-
tional Dependencies for Data Cleaning”. In Proc. ICDE, 2007.

[12] P. Dagum, R. M. Karp, M. Luby, and S. M. Ross. “An Optimal Algorithm for Monte
Carlo Estimation”. SIAM J. Comput., 29(5):1484–1496, 2000.

[13] N. Dalvi and D. Suciu. “Efficient query evaluation on probabilistic databases”. VLDB
Journal, 16(4):523–544, 2007.

[14] M. Davis and H. Putnam. “A Computing Procedure for Quantification Theory”.
Journal of ACM, 7(3):201–215, 1960.

[15] M. Goetz and C. Koch. “A Compositional Framework for Complex Queries over
Uncertain Data”, 2008. Under submission.

26

[16] E. Grädel, Y. Gurevich, and C. Hirsch. “The Complexity of Query Reliability”. In
Proc. PODS, pages 227–234, 1998.

[17] J. Huang, D. Olteanu, and C. Koch. “Lazy versus Eager Query Plans for Tuple-
Independent Probabilistic Databases”. In Proc. ICDE, 2009. To appear.

[18] T. Imielinski and W. Lipski. “Incomplete information in relational databases”. Journal
of ACM, 31(4):761–791, 1984.

[19] R. M. Karp and M. Luby. “Monte-Carlo Algorithms for Enumeration and Reliability
Problems”. In Proc. FOCS, pages 56–64, 1983.

[20] R. M. Karp, M. Luby, and N. Madras. “Monte-Carlo Approximation Algorithms for
Enumeration Problems”. J. Algorithms, 10(3):429–448, 1989.

[21] C. Koch. “A Compositional Query Algebra for Second-Order Logic and Uncertain
Databases”. Technical Report arXiv:0807.4620, 2008.

[22] C. Koch. “Approximating Predicates and Expressive Queries on Probabilistic
Databases”. In Proc. PODS, 2008.

[23] C. Koch and D. Olteanu. “Conditioning Probabilistic Databases”. In Proc. VLDB,
2008.

[24] D. Olteanu and J. Huang. Conjunctive queries with inequalities on probabilistic
databases. In Proc. SUM, 2008.

[25] D. Olteanu, C. Koch, and L. Antova. “World-set Decompositions: Expressiveness and
Efficient Algorithms”. Theoretical Computer Science, 403(23):265–284, 2008.

[26] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik.
“C-Store: A Column-oriented DBMS”. In Proc. VLDB, pages 553–564, 2005.

[27] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

27

