
MayBMS: A Probabilistic Database System

User Manual

Copyright (c) 2005-2009

The MayBMS Development Group

Christoph Koch∗, Dan Olteanu∗∗, Lyublena Antova∗, and Jiewen Huang∗,∗∗

∗ Department of Computer Science, Cornell University, Ithaca, NY

∗∗ Oxford University Computing Laboratory, Oxford, UK

2

Contents

1 Introduction 5

1.1 What is MayBMS? . 5

1.2 Applications . 6

1.3 Acknowledgments . 7

2 First Steps 9

2.1 Installing MayBMS . 9

2.2 Running MayBMS . 10

2.3 Short Instructions . 10

3 Probabilistic Databases 13

3.1 Informal Definition . 13

3.2 Formal Definition . 14

3.3 An Example . 15

4 Tutorial 17

4.1 A Really Simple Example . 17

4.2 Example: Triangles in Random Graphs 20

4.3 Example: Skills Management 23

4.4 Data Cleaning . 26

5 Formal Foundations 31

5.1 Probabilistic Databases: Notation 31

5.2 Query Language Desiderata 32

5.3 The Algebra . 33

5.4 Representing Probabilistic Data 40

3

4 CONTENTS

5.5 Conceptual Evaluation and Rewritings 46

5.6 Asymptotic Efficiency . 49

6 The MayBMS Query and Update Language 55

6.1 Language Overview . 55

6.2 Language Reference . 61

6.2.1 repair-key . 61

6.2.2 pick-tuples . 62

6.2.3 possible . 63

6.2.4 Confidence computation and approximate aggregates . 63

7 MayBMS Internals 69

8 The MayBMS Codebase 75

9 Experiments 79

9.1 Random Graphs . 80

9.1.1 Experiments with Varying Levels of Precision 80

9.1.2 Experiments with Different Edge Probabilities 80

9.1.3 Experiments with General Random Graphs 83

9.2 Probabilistic TPC-H . 83

A Queries in Random Graph Experiments 87

B Queries in General Random Graph Experiments 89

C Probabilistic TPC-H Queries 93

Chapter 1

Introduction

1.1 What is MayBMS?

TheMayBMS system (note: MayBMS is read as “maybe-MS”, like DBMS) is

a complete probabilistic database management system that leverages robust

relational database technology: MayBMS is an extension of the Postgres

server backend. MayBMS is open source and the source code is available

under the BSD license at

http://maybms.sourceforge.net

The MayBMS system has been under development since 2005. While

the development has been carried out in an academic environment, care has

been taken to build a robust, scalable system that can be reliably used in

real applications. The academic homepage of the MayBMS project is at

http://www.cs.cornell.edu/database/maybms/

MayBMS stands alone as a complete probabilistic database management

system that supports a powerful, compositional query language for which

nevertheless worst-case efficiency and result quality guarantees can be made.

We are aware of several research prototype probabilistic database manage-

ment systems that are built as front-end applications of Postgres, but of no

5

6 CHAPTER 1. INTRODUCTION

other fully integrated and available system. The MayBMS backend is acces-

sible through several APIs, with efficient internal operators for computing

and managing probabilistic data.

In summary, MayBMS has the following features:

• Full support of all features of PostgreSQL 8.3.3, including unrestricted

query functionality, query optimization, APIs, updates, concurrency

control and recovery, etc.

• Essentially no performance loss on PostgreSQL 8.3.3 functionality: Af-

ter parsing a query or DML statement, a fast syntactic check is made

to decide whether the statement uses the extended functionality of

MayBMS. If it does not, the subsequently executed code is exactly

that of PostgreSQL 8.3.3.

• Support for efficiently creating and updating probabilistic databases,

i.e., uncertain databases in which degrees of belief can be associated

with uncertain data.

• A powerful query and update language for processing uncertain data

that gracefully extends SQL with a small number of well-designed lan-

guage constructs.

• State-of-the-art efficient techniques for exact and approximate proba-

bilistic inference.

1.2 Applications

Database systems for uncertain and probabilistic data promise to have many

applications. Query processing on uncertain data occurs in the contexts of

data warehousing, data integration, and of processing data extracted from

the Web. Data cleaning can be fruitfully approached as a problem of reduc-

ing uncertainty in data and requires the management and processing of large

amounts of uncertain data. Decision support and diagnosis systems employ

hypothetical (what-if) queries. Scientific databases, which store outcomes of

scientific experiments, frequently contain uncertain data such as incomplete

1.3. ACKNOWLEDGMENTS 7

observations or imprecise measurements. Sensor and RFID data is inherently

uncertain. Applications in the contexts of fighting crime or terrorism, track-

ing moving objects, surveillance, and plagiarism detection essentially rely

on techniques for processing and managing large uncertain datasets. Beyond

that, many further potential applications of probabilistic databases exist and

will manifest themselves once such systems become available.

The MayBMS distribution comes with a number of examples that il-

lustrate its use in these application domains. Some of these examples are

described in the tutorial chapter of this manual.

The experiments section at the end of this manual reports on some perfor-

mance experiments with MayBMS. Unfortunately, at the time of writing this,

no benchmark for probabilistic database systems exists, so these experiments

are necessarily somewhat ad-hoc.

1.3 Acknowledgments

Michaela Goetz, Thomas Jansen and Ali Baran Sari are alumni of the MayBMS

team. The MayBMS project was previously supported by German Science

Foundation (DFG) grant KO 3491/1-1 and by funding provided by the Cen-

ter for Bioinformatics (ZBI) at Saarland University, Saarbruecken, Germany.

It is currently supported by grant IIS-0812272 of the US National Science

Foundation.

8 CHAPTER 1. INTRODUCTION

Chapter 2

First Steps

2.1 Installing MayBMS

Using the installers

Installers for MayBMS are available for both Windows and Linux operating

systems and can be downloaded at

https://sourceforge.net/projects/maybms/

After you have obtained a copy of the installer, start it and follow the

instructions.

Compiling from scratch

Alternatively, you can obtain the latest snapshot from the repository by

issuing the following command:

git clone https://git.code.sf.net/p/maybms/code maybms

(on a single line).

This creates a directory maybms/ with a subdirectory postgresql-8.3.3/

that contains the source code of the system.

To compile and install MayBMS, just follow the instructions for installing

PostgreSQL 8.3.3. The latter is documented at

http://www.postgresql.org/docs/8.3/interactive/installation.html.

9

https://sourceforge.net/projects/maybms/
http://www.postgresql.org/docs/8.3/interactive/installation.html

10 CHAPTER 2. FIRST STEPS

2.2 Running MayBMS

After you have installed MayBMS (in either of the described ways), you can

set up a database and start using it. Creating and accessing databases is the

same as in PostgreSQL 8.3.3. Follow the links

http://www.postgresql.org/docs/8.3/interactive/tutorial-createdb.html

and

http://www.postgresql.org/docs/8.3/interactive/tutorial-accessdb.html.

See next section for short instructions on how to run MayBMS.

2.3 Short Instructions

Alternatively, you can follow the following set of instructions.1

On most UNIX machines, Postgres is by default installed in the directory

/usr/local/pgsql/ and run under user “postgres”. MayBMS uses the same

defaults. If you prefer to install MayBMS in your home directory and run

it with your user privileges, you do not need root privileges to install it.

Proceed as follows: Change the path ac default prefix in line 279 of the file

maybms/postgresql-8.3.3/configure to a path into your home directory (e.g.

/home/myname/pgsql/ if your home directory is /home/myname/).

To compile, install, and start the Postgres server, execute the following

statements:

cd maybms/postgresql-8.3.3/

./configure

make

make install

cd /usr/local

pgsql/bin/initdb -D mydbname

pgsql/bin/pg_cql start -D mydbname

1If you do know how to compile and install Postgres, or have followed the installation

instructions above, you can ignore this.

http://www.postgresql.org/docs/8.3/interactive/tutorial-createdb.html
http://www.postgresql.org/docs/8.3/interactive/tutorial-accessdb.html

2.3. SHORT INSTRUCTIONS 11

When compiling with a recent version of gcc, one needs to disable some op-

timizations that are not compatible with PostgreSQL 8.3. To do this, replace

“./configure” with “./configure CFLAGS=-fno-aggressive-loop-optimizations”.

Note: In these minimal instructions, we did not create a special database

using createdb (so the default, template1, has to be used), and error messages

are written to the console.

Now MayBMS is available for connections from applications.

For example, the Postgres command line interface psql in which you can

issue MayBMS queries and data manipulation language statements is started

with

psql template1

Now you can enter the examples from, e.g., the following tutorial. The psql

program is terminated using the command “\q”. The database server is

stopped with

pgsql/bin/pg_ctl stop -D mydbname

Remark

Since Postgres and MayBMS use the same process identifiers, MayBMS and

Postgres cannot run concurrently on the same machine. If you start Postgres

when MayBMS is already running (or vice versa), there will be an error

message stating that Postgres is already running. Since MayBMS always

identifies itself as Postgres, standard Postgres applications and middleware

can run on MayBMS.

12 CHAPTER 2. FIRST STEPS

Chapter 3

Probabilistic Databases

We first give an informal definition of probabilistic databases, followed by a

formal definition.

3.1 Informal Definition

Given a relational database schema (i.e., the structural information usually

specified by SQL CREATE TABLE statements). A probabilistic database is

a finite set of possible worlds , where each possible world has a weight greater

than 0 but no greater than 1 such that the sum of the weights of all the

worlds is one. Each possible world is a relational database over the given

schema. That is, the schema is common to all possible worlds.

Possible worlds are a means of expressing uncertainty.

• In a frequentist interpretation, the probabilistic database represents the

possible outcomes of a random experiment, the outcomes of which are

relational databases (or can be conveniently represented as relational

databases). The probability weight of a possible world is (the limit of)

the relative frequency of that possible world occurring as outcome of

the random experiment over a large number of trials.

• In a Bayesian interpretation, one of the possible worlds is “true”, but

we do not know which one, and the probabilities represent degrees of

belief in the various possible worlds.

13

14 CHAPTER 3. PROBABILISTIC DATABASES

Note that these interpretations of probabilistic databases are completely

standard in probability theory (and formalized via the notion of probability

spaces). The only aspect particular to probabilistic databases is the fact that

possible worlds are relational databases.

Note that the idea of a probabilistic database as a set of possible worlds is

only the conceptual model. The physical representation of the set of possible

worlds in the MayBMS system is quite different (see Section 5.4) and allows

for the efficient and space-saving (compressed) representation of very large

sets of possible worlds.

3.2 Formal Definition

The following is a standard definition from probability theory and shall only

be recalled to demonstrate the close connection of probabilistic databases to

classical concepts in mathematics.

Definition 3.2.1 A finite probability space is a triple (Ω,F ,Pr) where

• Ω is a finite set called the sample space,

• F = 2Ω is the set of subsets of Ω (these subsets are called events; the

one-element subsets {ω} are called atomic events), and

• Pr is a probability measure, i.e., a function that maps each element

ω ∈ Ω (i.e., each atomic event) to a number between 0 and 1 such that

∑

ω∈Ω

Pr[ω] = 1

and that maps each (nonatomic) event E ∈ (F \ Ω) to
∑

ω∈E Pr[ω]. ✷

Formally, a probabilistic database over a relational database schema sch

is a finite probability space (Ω,F = 2Ω,Pr) with an associated function I

(for instance) that maps each ω ∈ Ω to a relational database over schema

sch.

We call the elements ω of Ω the possible worlds of the probabilistic

database.

3.3. AN EXAMPLE 15

We can identify events with Boolean queries Q that are true on a subset

of Ω. Of course, the probability of such an event is given by

Pr[Q] =
∑

ω∈Ω : Q(I(ω))=true

Pr[ω].

One particular type of event is membership of a given tuple ~t in the result

of a (nonboolean) query, i.e., an event

{ω ∈ Ω : ~t ∈ Q(I(ω))}.

The probability of this event is called the tuple confidence for tuple ~t.

A random variable X is a function from Ω to a set D (the “values” of the

random variable). We can associate each expression X = x, where x ∈ D,

with an event

{ω ∈ Ω | X(ω) = x}.

Again, this is the usual notion from probability theory.

3.3 An Example

Consider a finite probability space with

Ω = {ωrain,wet, ω¬rain,wet, ωrain,¬wet, ω¬rain,¬wet}

and Pr[ωrain,wet] = 0.35, Pr[ωrain,¬wet] = 0.05, Pr[ω¬rain,wet] = 0.1, and

Pr[ω¬rain,¬wet] = 0.5.

Let Wet be the event {ωrain,wet, ω¬rain,wet}. Then Pr[Wet] = 0.35+0.1 =

0.45. We define Boolean random variables Wet and Rain as follows:

Wet = {ωrain,wet 7→ true, ω¬rain,wet 7→ true, ωrain,¬wet 7→ false, ω¬rain,¬wet 7→ false};

Rain = {ωrain,wet 7→ true, ω¬rain,wet 7→ false, ωrain,¬wet 7→ true, ω¬rain,¬wet 7→ false}.

Then, Pr[Wet = true] is again 0.45.

The first example of the following tutorial chapter captures this example

in the framework of the MayBMS query and update language.

16 CHAPTER 3. PROBABILISTIC DATABASES

Chapter 4

Tutorial

This tutorial introduces the main features of MayBMS in an informal way.

The full examples can be run using the psql command line interface.

4.1 A Really Simple Example

We start by creating a simple table using SQL commands. The table encodes

that we see rain and wet ground with probability 0.4, no rain but wet ground

with probability 0.1, and no rain and dry ground with probability 0.5.

create table R (Dummy varchar, Weather varchar,

Ground varchar, P float);

insert into R values (’dummy’, ’rain’, ’wet’, 0.35);

insert into R values (’dummy’, ’rain’, ’dry’, 0.05);

insert into R values (’dummy’, ’no rain’, ’wet’, 0.1);

insert into R values (’dummy’, ’no rain’, ’dry’, 0.5);

select * from R;

dummy | weather | ground | p

-------+---------+--------+------

dummy | rain | wet | 0.35

dummy | rain | dry | 0.05

dummy | no rain | wet | 0.1

17

18 CHAPTER 4. TUTORIAL

dummy | no rain | dry | 0.5

(4 rows)

Table R is a completely standard relational database table, created using

standard SQL statement. One of the columns, P, stores probabilities, but to

the system these are only numbers without any particular meaning so far.

The following statement creates a probabilistic database table S:

create table S as

repair key Dummy in R weight by P;

The repair-key statement is one of the extensions of the MayBMS query

language over standard SQL, and it associates a special meaning to the values

taken from the “weight by” column.

The statement creates a probability space with a sample space consisting

of three possible databases – each one consisting just of one tuple from R –

with an associated probability measure given by the P column.

There are at least two natural interpretations of this example, one using

random variables and one using a possible worlds semantics.

• We can think of S as a table specifying the joint probability distribution

of two discrete random variables Weather (with values “rain” and “no

rain”) and Ground (with values “wet” and “dry”).

• Alternatively, there are three possible worlds. Each of these worlds is a

relation S with a single tuple from R. The probability of such a world

is the value given for the tuple in column P of R.

We can compute the probabilities Pr[Ground=’wet’] and Pr[Weather=’rain’

and Ground=’wet’] as follows using the MayBMS conf() aggregate (which

stands for “confidence”).

create table Wet as

select conf() as P from S where Ground = ’wet’;

select * from Wet;

p

4.1. A REALLY SIMPLE EXAMPLE 19

0.45

(1 row)

create table Rain_and_Wet as

select conf() as P from S

where Weather = ’rain’ and Ground = ’wet’;

select * from Rain_and_Wet;

p

0.35

(1 row)

The conditional probability Pr[Weather=’rain’ | Ground=’wet’] can be

computed as the ratio

Pr[Weather=’rain’ and Ground=’wet’] / Pr[Ground=’wet’].

select R1.P/R2.P as Rain_if_Wet from Rain_and_Wet R1, Wet R2;

rain_if_wet

0.777777778

(1 row)

Since conf() is an aggregate, we can compute the marginal probability

table for random variable Ground as

select Ground, conf() from S group by Ground;

ground | conf

--------+------

dry | 0.55

wet | 0.45

(2 rows)

20 CHAPTER 4. TUTORIAL

4.2 Example: Triangles in Random Graphs

In this tutorial, we compute the probability that a triangle occurs in a random

graph with k named (and thus distinguishable) nodes. That is, we ask for

the probability that an undirected graph, chosen uniformly at random among

the graphs of k nodes, contains at least one triangle. This is equivalent to

computing the count n of graphs that contain a triangle among the 2k·(k−1)/2

undirected graphs of k distinguished nodes. Indeed, an undirected graph of

k nodes has at most k · (k − 1)/2 edges, and we obtain all the graphs over

the given k nodes by considering all subsets of this maximal set of edges.

We start by creating a unary “node” relation, say with five nodes. We

do this with the standard SQL “create table” and “insert” commands, which

behave as usual in a relational database system.

create table node (n integer);

insert into node values (1);

insert into node values (2);

insert into node values (3);

insert into node values (4);

insert into node values (5);

Next we create the total order over the nodes, i.e., a binary relation with

exactly one edge between any two nodes. This is again a standard SQL

“create table” statement where we compute the tuples to be inserted with a

standard SQL query over the “node” relation.

create table total_order as

(

select n1.n as u, n2.n as v

from node n1, node n2

where n1.n < n2.n

);

We create a table to represent that each edge is either in the graph (bit=1)

or missing (bit=0).

4.2. EXAMPLE: TRIANGLES IN RANDOM GRAPHS 21

create table inout (bit integer);

insert into inout values (1);

insert into inout values (0);

The following operation introduces uncertainty into the database and

creates a probabilistic database with 25·4/2 = 1024 possible worlds, one for

each possible edge relation over the five nodes (=subset of the total order).

We do this by a query operation “repair key” that for each edge of the total

order nondeterministically chooses whether the edge is in the graph (bit=1)

or not. (That is, since we do not indicate at what probability either of the two

alternatives for bit is to be chosen, the system makes the decision uniformly

at random, choosing bit=1 with probability 0.5.) The resulting probabilistic

database represents all the alternative edge relations as possible worlds.

create table to_subset as

(

repair key u,v in (select * from total_order, inout)

);

The “repair key” operation is the most difficult to understand and at

the same time the most interesting addition to SQL that MayBMS provides.

Conceptually, “repair key” takes a set of attributes ~K and a relation R (in

this case the relational product of total order and inout) as arguments and

nondeterministically chooses a maximal repair of key ~K in R, that is, it re-

moves a minimal set of tuples from R such that ~K ceases to violate a key

constraint on columns u, v. In this case, there are exactly two tuples for each

pair (u, v), namely (u, v, 1) and (u, v, 0), and repair key chooses exactly one

of them. The consequence is that, overall, the operation nondeterministi-

cally chooses a subset of the set of all edges. It chooses from these subsets

uniformly. The “repair key” operation accepts an additional argument that

allows us to assign nonuniform probabilities to the possible choices, but in

this case we do want uniform probabilities.

We have now created a probabilistic database. Conceptually, queries and

updates are evaluated in all possible worlds in parallel. Viewed differently,

there is only one to subset relation (but we do not know which one), and we

continue to run queries and updates on this uncertain relation.

22 CHAPTER 4. TUTORIAL

To actually create the edge relation, we select those tuples that have

bit=1 and compute their symmetric closure (to really represent an undirected

graph).

create table edge0 as (select u,v from to_subset where bit=1);

create table edge as (select * from edge0);

insert into edge (select v as u, u as v from edge0);

Now we can compute the probability that the chosen graph has a triangle

as

select conf() as triangle_prob

from edge e1, edge e2, edge e3

where e1.v = e2.u and e2.v = e3.u and e3.v=e1.u

and e1.u <> e2.u and e1.u <> e3.u and e2.u <> e3.u;

where the conf aggregate computes the probability (“confidence”) that the

query given by the from-where statement returns a nonempty result. This

results in

triangle_prob

0.623355

(1 row)

This is the correct probability: out of the 1024 possible graphs of five

nodes, 636 have a triangle, and 636/1024 ≈ .623355. Indeed, the query

select *

from edge e1, edge e2, edge e3

where e1.v = e2.u and e2.v = e3.u and e3.v=e1.u

and e1.u <> e2.u and e1.u <> e3.u and e2.u <> e3.u;

computes at least one tuple in exactly those possible worlds (=on those

graphs) that have a triangle. The conf() aggregate applied to this query

conceptually computes the sum of the probability weights of the worlds in

4.3. EXAMPLE: SKILLS MANAGEMENT 23

which the query has a nonempty result. (The actual implementation does not

naively iterate over possible worlds, because this would be very inefficient.)

A more efficient implementation of the same query starts from the “edge0”

relation:

select conf() as triangle_prob

from edge0 e1, edge0 e2, edge0 e3

where e1.v = e2.u and e2.v = e3.v and e1.u = e3.u

and e1.u < e2.u and e2.u < e3.v;

Finally, an even more efficient implementation uses the aconf(ǫ, δ) aggre-

gate to compute an (ǫ, δ)-approximation of the probability, i.e., the proba-

bility that the computed value p̂ returned by aconf deviates from the correct

probability p by more than ǫ · p is less than δ.

select aconf(.05,.05) as triangle_prob

from edge0 e1, edge0 e2, edge0 e3

where e1.v = e2.u and e2.v = e3.v and e1.u = e3.u

and e1.u < e2.u and e2.u < e3.v;

This result may be somewhat off, but the probability that the error is

greater than 5% is less than 5%.

Note that in the example we have seen only two extensions of SQL, “re-

pair key” and “[a]conf”. The good news is that this is essentially all there

is. SQL extended by just these two features allows for very powerful queries,

including the computation of conditional probability tables, maximum like-

lihood estimates, maximum-a-posteriori, Bayesian learning, and much more.

4.3 Example: Skills Management

The following example demonstrates that probabilistic databases can be use-

ful even if the input data is not uncertain and the desired result is a classical

relational table. We define a hypothetical query in the context of skills man-

agement. Assume we are given a classical relational database with two tables,

one, CE, stores possible takeover targets – companies that we might decide

24 CHAPTER 4. TUTORIAL

to buy with the employees that work in these companies. The second table,

ES, stores each employee’s skills.

Here is an example database. We can build this database in MayBMS

with the standard SQL “create table” and “insert” statements.

CE CID EID

Google Bob

Google Joe

Yahoo Dan

Yahoo Bill

Yahoo Fred

ES EID Skill

Bob Web

Joe Web

Dan Java

Dan Web

Bill Search

Fred Java

Now suppose that we want to buy exactly one of those companies, and

we expect exactly one employee to leave as a result of the takeover. Which

skills can we gain for certain?

We express this query in two steps. First we randomly choose a company

to buy and an employee who leaves, and compute the remaining employees

in the chosen company. We obtain this uncertain table using the following

query:

create table RemainingEmployees as

select CE.cid, CE.eid

from CE,

(repair key dummy

in (select 1 as dummy, * from CE)) Choice

where CE.cid = Choice.cid

and CE.eid <> Choice.eid;

Note that the probabilistic database thus created contains five possible

worlds (since there are five tuples in CE), with a uniform probability distri-

bution. Not all these worlds have the same number of tuples: If we chose

Google and Bob, the world contains one tuple, Google and Joe. If we choose

Yahoo and Dan, the world contains two tuples, (Yahoo, Bill) and (Yahoo,

Fred).

Now we compute which skills we gain for certain:

4.3. EXAMPLE: SKILLS MANAGEMENT 25

create table SkillGained as

select Q1.cid, Q1.skill, p1, p2, p1/p2 as p

from (select R.cid, ES.skill, conf() as p1

from RemainingEmployees R, ES

where R.eid = ES.eid

group by R.cid, ES.skill) Q1,

(select cid, conf() as p2

from RemainingEmployees

group by cid) Q2

where Q1.cid = Q2.cid;

select cid, skill from SkillGained where p=1;

The result is the table

CID Skill

Google Web

Yahoo Java

indicating that if we buy Google, we gain the skill “Web” for certain, and if

we buy Yahoo, we gain the skill “Java” for certain.

It is worth looking at the auxiliary table SkillGained:

SkillGained CID Skill p1 p2 p

Google Web 2/5 2/5 1

Yahoo Java 3/5 3/5 1

Yahoo Web 2/5 3/5 2/3

Yahoo Search 2/5 3/5 2/3

This table consists of the tuples (x, y, p1, p2, p) such that

• x is a company,

• y is a skill,

• p1 is the probability that the chosen company is x and the skill y is

gained (e.g., for x=Yahoo and y=Web, this is true in two of the five

possible worlds),

26 CHAPTER 4. TUTORIAL

• p2 is the probability that x is the chosen company (e.g., for x=Yahoo,

this is true in three of the five possible worlds), and

• p = p1/p2 is the probability that skill y is gained if company x is

bought (e.g., for x=Yahoo and y=Web, the probability is 2/3: of the

three possible worlds in which Yahoo was bought, only two worlds

guarantee that the skill Web is gained).

Thus, indeed, if we select those tuples of SkillGained for which p = 1, we

obtain the desired pairs of companies and skills – those skills that we obtain

for certain if we buy a company.

4.4 Data Cleaning

The following example is in the domain of data cleaning. Consider a cen-

sus in which a number of individuals complete forms, that are subsequently

digitized using an OCR system that will in some cases indicate a number

of alternative readings, together with probabilities. For simplicity, let us

assume that the forms only ask for a social security number (SSN).

For example, if two individuals complete their forms and the OCR system

recognizes the SSN of the first to be either 185 (with probability .4) or 785

and the SSN of the second to be either 185 (with probability .7) or 186, we

store this information in a probabilistic database constructed as follows:

create table Census_SSN_0 (tid integer, ssn integer, p float);

insert into Census_SSN_0 values (1, 185, .4);

insert into Census_SSN_0 values (1, 785, .6);

insert into Census_SSN_0 values (2, 185, .7);

insert into Census_SSN_0 values (2, 186, .3);

create table Census_SSN as

repair key tid in Census_SSN_0 weight by p;

We can view the alternatives and their probability weights by the follow-

ing query:

4.4. DATA CLEANING 27

select tid, ssn, conf() as prior

from Census_SSN

group by tid, ssn;

tid | ssn | prior

-----+-----+-------

1 | 185 | 0.4

1 | 785 | 0.6

2 | 185 | 0.7

2 | 186 | 0.3

We can determine the probability that at least one individual has any

particular SSN (assuming that the OCR system did not miss the correct

SSN as an alternative) using the following query:

select ssn, conf() as ssn_prior

from Census_SSN

group by ssn;

ssn | ssn_prior

-----+-----------

185 | 0.82

186 | 0.3

785 | 0.6

Indeed, the probability that at least one individual has SSN 185 is 1− .6 · .3 =

.82.

We now perform data cleaning using a single integrity constraint, namely

that no two individuals can have the same ssn. Conceptually, we want to

exclude worlds that violate the functional dependency

ssn→ tid,

i.e., the constraint that ssn must be a key for the relation.

We start by computing an auxiliary relation that computes, in each pos-

sible worlds, the ssn values that violate the integrity constraint.

28 CHAPTER 4. TUTORIAL

create table FD_Violations as

select S1.ssn

from Census_SSN S1, Census_SSN S2

where S1.tid < S2.tid and S1.ssn = S2.ssn;

Note that two tuples violate the constraint if they have the same ssn but

different tid. We express this in the above query using a slightly changed

condition: (S1.tid < S2.tid and S1.ssn = S2.ssn) instead of (S1.tid <> S2.tid

and S1.ssn = S2.ssn). However, both conditions select the same set of distinct

ssn values that violate the integrity constraint.

This query computes the uncertain table that holds 185 in the world in

which both forms have ssn value 185. In all other worlds it is empty.

Next we compute an auxiliary relation which computes, for each SSN

that occurs in at least one world in which an FD is violated, the sum of the

weights of those worlds in which the SSN occurs and an FD is violated.

create table FD_Violations_by_ssn as

(

select S.ssn, conf() as p

from FD_Violations V,

Census_SSN S

group by S.ssn

);

Next we compute the conditional probability table

create table TidSSNPosterior as

select Q1.tid, Q1.ssn, p1, p2, p3,

cast((p1-p2)/(1-p3) as real) as posterior

from

(

select tid, ssn, conf() as p1

from Census_SSN

group by tid, ssn

) Q1,

4.4. DATA CLEANING 29

(

(select ssn, p as p2 from FD_Violations_by_ssn)

union

(

(select ssn, 0 as p2 from Census_SSN_0)

except

(select possible ssn, 0 as p2 from FD_Violations_by_ssn)

)

) Q2,

(

select conf() as p3

from FD_Violations

) Q3

where Q1.ssn = Q2.ssn;

select * from TidSSNPosterior;

tid | ssn | p1 | p2 | p3 | posterior

-----+-----+-----+------+------+-----------

1 | 185 | 0.4 | 0.28 | 0.28 | 0.166667

1 | 785 | 0.6 | 0 | 0.28 | 0.833333

2 | 185 | 0.7 | 0.28 | 0.28 | 0.583333

2 | 186 | 0.3 | 0 | 0.28 | 0.416667

This table stores, for each pair of form tid and ssn, the posterior proba-

bility that the individual who completed the form tid has the social security

number ssn given that no two individuals can have the same ssn.

We can compute, for each form, the maximum-a-posteriori ssn (the most

likely ssn given the evidence specified by the integrity constraint) as

select tid, argmax(ssn, posterior) as map

from TidSSNPosterior

group by tid

order by tid;

30 CHAPTER 4. TUTORIAL

tid | map

-----+-----

1 | 785

2 | 185

In a sense, these map values are the locally best values that we could

decide upon for each uncertain answer in our census database. Note, however,

that, if we always choose the map value, we may sometimes create a database

that again violates the integrity constraints used for data cleaning. This

would have been the case if we had indicated probability .9 for both 185

alternatives in the input database.

A further example that computes conditional probabilities and MAP val-

ues in a different context can be found in Chapter 6.1 (Example 6.1.1).

Chapter 5

Formal Foundations

This chapter describes the formal foundations of MayBMS, including the

principles used for representing and storing probabilistic data, the design of

the query language, and efficient algorithms for query processing.

It is safe for a reader who has gained sufficient intuitive understanding

of the workings of MayBMS from the tutorial to skip this chapter on first

reading and to directly proceed to the query language reference chapter that

follows.

5.1 Probabilistic Databases: Notation

Given a schema with relation names R1, . . . , Rk. We use sch(Rl) to denote

the attributes of relation schema Rl. Formally, a probabilistic database is a

finite set of structures

W = {〈R1
1, . . . , R

1
k, p

[1]〉, . . . , 〈Rn
1 , . . . , R

n
k , p

[n]〉}

of relations Ri
1, . . . , R

i
k and numbers 0 < p[i] ≤ 1 such that

∑

1≤i≤n

p[i] = 1.

We call an element 〈Ri
1, . . . , R

i
k, p

[i]〉 ∈W a possible world , and p[i] its prob-

ability. We use superscripts for indexing possible worlds. To avoid confusion

with exponentiation, we sometimes use bracketed superscripts ·[i]. We call a

31

32 CHAPTER 5. FORMAL FOUNDATIONS

relation R complete or certain if its instantiations are the same in all possible

worlds of W, i.e., if R1 = · · · = Rn.

Tuple confidence refers to the probability of the event ~t ∈ R, where R is

one of the relation names of the schema, with

Pr[~t ∈ R] =
∑

1≤i≤n: ~t∈Ri

p[i].

5.2 Query Language Desiderata

At the time of writing this, there is no accepted standard query language for

probabilistic databases. In fact, we do not even agree today what use cases

and functionality such systems should support. It seems to be proper to start

the query language discussion with the definition of design desiderata. The

following are those used in the design of MayBMS.

1. Efficient query evaluation.

2. The right degree of expressive power. The language should be powerful

enough to support important queries. On the other hand, it should not

be too strong, because expressiveness generally comes at a price: high

evaluation complexity and infeasibility of query optimization.

3. Genericity. The semantics of a query language should be independent

from details of how the data is represented. Queries should behave in

the same way no matter how the probabilistic data is stored. This is

a basic requirement that is even part of the traditional definition of

what constitutes a query (cf. e.g. [1]), but it is nontrivial to achieve for

probabilistic databases [4].

4. The ability to transform data. Queries on probabilistic databases are

often interpreted quite narrowly in the literature. It is the authors’

view that queries in general should be compositional mappings between

databases, in this case probabilistic databases. This is a property taken

for granted in relational databases. It allows for the definition of clean

database update languages.

5.3. THE ALGEBRA 33

5. The ability to introduce additional uncertainty. This may appear to be

a controversial goal, since uncertainty is commonly considered undesir-

able, and probabilistic databases are there to deal with it by providing

useful functionality despite uncertainty. However, it can be argued

that an uncertainty-introduction operation is important for at least

three reasons: (1) for compositionality, and to allow construction of

an uncertain database from scratch (as part of the update language);

(2) to support what-if queries; and (3) to extend the hypothesis space

modeled by the probabilistic database. The latter is needed to ac-

commodate the results of experiments or new evidence, and to define

queries that map from prior to posterior probabilistic databases. This

is a nontrivial issue, and will be discussed in more detail later.

The next section introduces a query algebra and argues that it satisfies

each of these desiderata.

5.3 The Algebra

This section covers the core query algebra of MayBMS: probabilistic world-set

algebra (probabilistic WSA) [4, 13, 12]. Informally, probabilistic world-set

algebra consists of the operations of relational algebra, an operation for com-

puting tuple confidence conf, and the repair-key operation for introducing

uncertainty. The operations of relational algebra are evaluated individually,

in “parallel”, in each possible world. The operation conf(R) computes, for

each tuple that occurs in relation R in at least one world, the sum of the

probabilities of the worlds in which the tuple occurs. The result is a cer-

tain relation, or viewed differently, a relation that is the same in all possible

worlds. Finally, repair-key ~A@P (R), where
~A, P are attributes of R, conceptu-

ally nondeterministically chooses a maximal repair of key ~A. This operation

turns a possible world Ri into the set of worlds consisting of all possible

maximal repairs of key ~A. A repair of key ~A in relation Ri is a subset of Ri

for which ~A is a key. It uses the numerically-valued column P for weighting

the newly created alternative repairs.

Formally, probabilistic world-set algebra consists of the following opera-

tions:

34 CHAPTER 5. FORMAL FOUNDATIONS

• The operations of relational algebra (selection σ, projection π, product

×, union ∪, difference −, and attribute renaming ρ), which are applied

in each possible world independently.

The semantics of operations Θ on probabilistic database W is

[[Θ(Rl)]](W) := {〈R1, . . . , Rk,Θ(Rl), p〉 | 〈R1, . . . , Rk, p〉 ∈W}

for unary operations (1 ≤ l ≤ k). For binary operations, the semantics

is

[[Θ(Rl, Rm)]](W) := {〈R1, . . . , Rk,Θ(Rl, Rm), p〉 | 〈R1, . . . , Rk, p〉 ∈W}.

Selection conditions are Boolean combinations of atomic conditions

(i.e., negation is permitted even in the positive fragment of the al-

gebra). Arithmetic expressions may occur in atomic conditions and in

the arguments of π and ρ. For example, ρA+B→C(R) in each world adds

up the A and B values of each tuple of R and keeps them in a new C

attribute.

• An operation for computing tuple confidence,

[[conf(Rl)]](W) := {〈R1, . . . , Rk, S, p〉 | 〈R1, . . . , Rk, p〉 ∈W}

where, w.l.o.g., P 6∈ sch(Rl), and

S = {〈~t, P : Pr[~t ∈ Rl]〉 | ~t ∈
⋃

i

Ri
l},

with schema sch(S) = sch(Rl) ∪ {P}. The result of conf(Rl), the

relation S, is the same in all possible worlds, i.e., it is a certain relation.

By our definition of probabilistic databases, each possible world has

nonzero probability. As a consequence, conf does not return tuples

with probability 0.

For example, on probabilistic database

R1 A B

a b

b c

p[1] = .3

R2 A B

a b

c d

p[2] = .2

R3 A B

a c

c d

p[3] = .5

5.3. THE ALGEBRA 35

conf(R) computes, for each possible tuple, the sum of the weights of

the possible worlds in which it occurs, here

conf(R) A B P

a b .5

a c .5

b c .3

c d .7

• An uncertainty-introducing operation, repair-key , which can be thought

of as sampling a maximum repair of a key for a relation. Repairing a

key of a complete relation R means to compute, as possible worlds, all

subset-maximal relations obtainable from R by removing tuples such

that a key constraint is satisfied. We will use this as a method for

constructing probabilistic databases, with probabilities derived from

relative weights attached to the tuples of R.

We say that relation R′ is a maximal repair of a functional dependency

(fd, cf. [1]) for relation R if R′ is a maximal subset of R which satisfies

that functional dependency, i.e., a subset R′ ⊆ R that satisfies the fd

such that there is no relation R′′ with R′ ⊂ R′′ ⊆ R that satisfies the

fd.

Let ~A,B ∈ sch(Rl). For each possible world 〈R1, . . . , Rk, p〉 ∈W, let

column B of R contain only numerical values greater than 0 and let Rl

satisfy the fd (sch(Rl)−B)→ sch(Rl). Then,

[[repair-key ~A@B(Rl)]](W) :=
{

〈R1, . . . , Rk, πsch(Rl)−B(R̂l), p̂〉 | 〈R1, . . . , Rk, p〉 ∈W,

R̂l is a maximal repair of fd ~A→ sch(Rl),

p̂ = p ·
∏

~t∈R̂l

~t.B
∑

~s∈Rl:~s. ~A=~t. ~A
~s.B

}

Such a repair operation, apart from its usefulness for the purpose

implicit in its name, is a powerful way of constructing probabilistic

databases from complete relations.

36 CHAPTER 5. FORMAL FOUNDATIONS

Example 5.3.1 Consider the example of tossing a biased coin twice.

We start with a certain database

R Toss Face FProb

1 H .4

1 T .6

2 H .4

2 T .6

p = 1

that represents the possible outcomes of tossing the coin twice. We

turn this into a probabilistic database that represents this information

using alternative possible worlds for the four outcomes using the query

S := repair-keyToss@FProb(R). The resulting possible worlds are

S1 Toss Face

1 H

2 H

S2 Toss Face

1 H

2 T

S3 Toss Face

1 T

2 H

S4 Toss Face

1 T

2 T

with probabilities p[1] = p · .4
.4+.6

· .4
.4+.6

= .16, p[2] = p[3] = .24, and

p[4] = .36. ✷

The fragment of probabilistic WSA which excludes the difference opera-

tion is called positive probabilistic WSA.

Computing possible and certain tuples is redundant with conf:

poss(R) := πsch(R)(conf(R))

cert(R) := πsch(R)(σP=1(conf(R)))

Example 5.3.2 A bag of coins contains two fair coins and one double-

headed coin. We take one coin out of the bag but do not look at its two

faces to determine its type (fair or double-headed) for certain. Instead we

toss the coin twice to collect evidence about its type.

5.3. THE ALGEBRA 37

Coins Type Count

fair 2

2headed 1

Faces Type Face FProb

fair H .5

fair T .5

2headed H 1

Tosses Toss

1

2

Rf Type

fair

Rdh Type

2headed

Sf.HH Type Toss Face

fair 1 H

fair 2 H

Sf.HT Type Toss Face

fair 1 H

fair 2 T

Sdh Type Toss Face

2headed 1 H

2headed 2 H

pf.HH = 1/6 pf.HT = 1/6 pdh = 1/3

Sf.TH Type Toss Face

fair 1 T

fair 2 H

Sf.TT Type Toss Face

fair 1 T

fair 2 T

pf.TH = 1/6 pf.TT = 1/6

Ev Toss Face

1 H

2 H

Q Type P

fair (1/6)/(1/2) = 1/3

2headed (1/3)/(1/2) = 2/3

Figure 5.1: Tables of Example 5.3.2.

38 CHAPTER 5. FORMAL FOUNDATIONS

We start out with a complete database (i.e., a relational database, or a

probabilistic database with one possible world of probability 1) consisting of

three relations, Coins, Faces, and Tosses (see Figure 5.1 for all tables used

in this example). We first pick a coin from the bag and model that the coin

be either fair or double-headed. In probabilistic WSA this is expressed as

R := repair-key∅@Count(Coins).

This results in a probabilistic database of two possible worlds,

{〈Coins,Faces, Rf , pf = 2/3〉, 〈Coins,Faces, Rdh, pdh = 1/3〉}.

The possible outcomes of tossing the coin twice can be modeled as

S := repair-keyToss@FProb(R ⊲⊳ Faces× Tosses).

This turns the two possible worlds into five, since there are four possible

outcomes of tossing the fair coin twice, and only one for the double-headed

coin.

Let T := πToss,Face(S). The posterior probability that a coin of type x

was picked, given the evidence Ev (see Figure 5.1) that both tosses result in

H, is

Pr[x ∈ R | T = Ev] =
Pr[x ∈ R ∧ T = Ev]

Pr[T = Ev]
.

Let A be a relational algebra expression for the Boolean query T = Ev. Then

we can compute a table of pairs 〈x,Pr[x ∈ R | T = Ev]〉 as

Q := πType,P1/P2→P (ρP→P1
(conf(R× A))× ρP→P2

(conf(A))).

The prior probability that the chosen coin was fair was 2/3; after taking

the evidence from two coin tosses into account, the posterior probability

Pr[the coin is fair | both tosses result in H] is only 1/3. Given the evidence

from the coin tosses, the coin is now more likely to be double-headed. ✷

Example 5.3.3 We redefine the query of Example 5.3.2 such that repair-

key is only applied to certain relations. Starting from the database obtained

by computing R, with its two possible worlds, we perform the query S0 :=

5.3. THE ALGEBRA 39

repair-keyType,Toss@FProb(Faces × Tosses) to model the possible outcomes of

tossing the chosen coin twice. The probabilistic database representing these

repairs consists of eight possible worlds, with the two possible R relations

of Example 5.3.2 and, independently, four possible S0 relations. Let S :=

R ⊲⊳ S0. While we now have eight possible worlds rather than five, the four

worlds in which the double-headed coin was picked all agree on S with the

one world in which the double-headed coin was picked in Example 5.3.2, and

the sum of their probabilities is the same as the probability of that world. It

follows that the new definition of S is equivalent to the one of Example 5.3.2

and the rest of the query is the same. ✷

Discussion The repair-key operation admits an interesting class of queries:

Like in Example 5.3.2, we can start with a probabilistic database of prior

probabilities, add further evidence (in Example 5.3.2, the result of the coin

tosses) and then compute interesting posterior probabilities. The adding

of further evidence may require extending the hypothesis space first. For

this, the repair-key operation is essential. Even though our goal is not to

update the database, we have to be able to introduce uncertainty just to

be able to model new evidence – say, experimental data. Many natural

and important probabilistic database queries cannot be expressed without

the repair-key operation. The coin tossing example was admittedly a toy

example (though hopefully easy to understand). Real applications such as

diagnosis or processing scientific data involve technically similar questions.

Regarding our desiderata, it is quite straightforward to see that prob-

abilistic WSA is generic (3): see also the proof for the non-probabilistic

language in [4]. It is clearly a data transformation query language (4) that

supports powerful queries for defining databases. The repair-key operation

is our construct for uncertainty introduction (5). The evaluation efficiency

(1) of probabilistic WSA is studied in Section 5.5. Expressiveness (2) is best

demonstrated by the ability of a language to satisfy many relevant use cases.

While there are no agreed upon expressiveness benchmarks for probabilis-

tic databases yet, this manual provides numerous examples that are closely

related to natural use cases.

40 CHAPTER 5. FORMAL FOUNDATIONS

5.4 Representing Probabilistic Data

This section discusses the method used for representing and storing proba-

bilistic data and correlations in MayBMS. We start by motivating the prob-

lem of finding a practical representation system.

Example 5.4.1 Consider a census scenario, in which a large number of in-

dividuals manually fill in forms. The data in these forms subsequently has

to be put into a database, but no matter whether this is done automatically

using OCR or by hand, some uncertainty may remain about the correct val-

ues for some of the answers. Below are two simple filled in forms. Each one

contains the social security number, name, and marital status of one person.

Name:

Marital Status:

Social Security Number:

Name:

Marital Status:

Social Security Number:

(1) single
 (2) married

(3) divorced
 (4) widowed

(1) single
 (2) married

(3) divorced
 (4) widowed

The first person, Smith, seems to have checked marital status “single”

after first mistakenly checking “married”, but it could also be the opposite.

The second person, Brown, did not answer the marital status question. The

social security numbers also have several possible readings. Smith’s could be

185 or 785 (depending on whether Smith originally is from the US or from

Europe) and Brown’s may either be 185 or 186.

In an SQL database, uncertainty can be managed using null values, using

a table

(TID) SSN N M

t1 null Smith null

t2 null Brown null

5.4. REPRESENTING PROBABILISTIC DATA 41

Using nulls, information is lost about the values considered possible for

the various fields. Moreover, it is not possible to express correlations such

as that, while social security numbers may be uncertain, no two distinct

individuals can have the same. In this example, we can exclude the case that

both Smith and Brown have social security number 185. Finally, we cannot

store probabilities for the various alternative possible worlds. ✷

This leads to three natural desiderata for a representation system: (*)

Expressiveness, that is, the power to represent all (relevant) probabilistic

databases, (*) succinctness, that is, space-efficient storage of the uncertain

data, and (*) efficient real-world query processing.

Often there are many rather (but not quite) independent local alternatives

in probabilistic data, which multiply up to a very large number of possible

worlds. For example, the US census consists of many dozens of questions for

about 300 million individuals. Suppose forms are digitized using OCR and

the resulting data contains just two possible readings for 0.1% of the answers

before cleaning. Then, there are on the order of 210,000,000 possible worlds,

and each one will take close to one Terabyte of data to store. Clearly, we need

a way of representing this data that is much better than a naive enumeration

of possible worlds.

Also, the repair-key operator of probabilistic world-set algebra in general

causes an exponential increase in the number of possible worlds.

There is a trade-off between succinctness on one hand and efficient pro-

cessing on the other. Computing confidence conf(Q) of conjunctive queries

Q on tuple-independent databases is #P-hard – one such hard query [6] (in

datalog notation [1]) is

Q← R(x), S(x, y), T (y).

At the same time, much more expressive queries can be evaluated efficiently

on nonsuccinct representations (enumerations of possible worlds) [4]. Query

evaluation in probabilistic databases is not hard because of the presence

of probabilities, but because of the succinct storage of alternative possible

worlds! We can still have the goal of doing well in practice.

42 CHAPTER 5. FORMAL FOUNDATIONS

Conditional tables MayBMS uses a purely relational representation sys-

tem for probabilistic databases called U-relational databases , which is based

on probabilistic versions of the classical conditional tables (c-tables) of the

database literature [9]. Conditional tables are a relational representation sys-

tem based on the notion of labeled null values or variables , that is, null values

that have a name. The name makes it possible to use the same variable x

in several fields of a database, indicating that the value of x is unknown but

must be the same in all those fields in which x occurs. Tables with variables

are also known as v-tables .

Formally, c-tables are v-tables extended by a column for holding a local

condition. That is, each tuple of a c-table has a Boolean condition con-

structed using “and”, “or”, and “not” from atomic conditions of the form

x = c or x = y, where c are constants and x and y are variables . Possible

worlds are determined by functions θ that map each variable that occurs in

at least one of the tuples or local conditions in the c-tables of the database to

a constant. The database in that possible world is obtained by (1) selecting

those tuples whose local condition φ satisfies the variable assignment θ, i.e.,

that becomes true if each variable x in φ is replaced by θ(x), (2) replacing all

variables y in the value fields of these tuples by θ(y), and (3) projecting away

the local condition column. For example, the following c-table represents the

possible worlds for the census forms:

R SSN N M cond

185 Smith y x = 1

785 Smith y x = 2

785 Smith y x = 3

186 Brown z x = 1

185 Brown z x = 2

186 Brown z x = 3

The variables y and z have domains {1, 2} and {1, 2, 3, 4}, respectively and

encode the marital statuses of the two persons, and variable x with domain

{1, 2, 3} is used to encode the uniqueness of the social security constraint.

Indeed, under any valuation θ the tuples having social security status of 185

do not have their local conditions satisfied at the same time.

5.4. REPRESENTING PROBABILISTIC DATA 43

Conditional tables are sometimes defined to include a notion of global

condition, which we do not use: We want each probabilistic database to

have at least one possible world. We can encode the same information as

above using the following c-table with global condition Φ = (u 6= v), where

u : dom(u) = {185, 785}, v : dom(v) = {185, 186} are the variables holding

the social security numbers:

R SSN N M cond

u Smith y true

v Brown z true

Conditional tables are a so-called strong representation system: They are

closed under the application of relational algebra queries. The set of worlds

obtained by evaluating a relational algebra query in each possible world rep-

resented by a conditional table can again be straightforwardly represented

by a conditional table. Moreover, the local conditions are in a sense the most

natural and simple formalism possible to represent the result of queries on

data with labeled nulls.

U-Relational Databases In our model, probabilistic databases are finite

sets of possible worlds with probability weights. It follows that each variable

naturally has a finite domain, the set of values it can take across all possible

worlds. This has several consequences. First, variables can be considered

finite random variables . Second, only allowing for variables to occur in local

conditions, but not in attribute fields of the tuples, means no restriction of

expressiveness. Moreover, we may assume without loss of generality that

each atomic condition is of the form x = c (i.e., we never have to compare

variables).

If we start with a c-table in which each local condition is a conjunction of

no more than k atomic conditions, then a positive relational algebra query on

this uncertain database will result in a c-table in which each local condition

is a conjunction of no more than k′ atoms, where k′ only depends on k and

the query, but not on the data. If k is small, it is reasonable to actually hard-

wire it in the schema, and represent local conditions by k pairs of columns

to store atoms of the form x = c.

44 CHAPTER 5. FORMAL FOUNDATIONS

These are the main ideas of our representation system, U-relations. Ran-

dom variables are assumed independent in the current MayBMS system, but

as we will see, this means no restriction of generality. Nevertheless, it is one

goal of future work to support graphical models for representing more corre-

lated joint probability distributions below our U-relations. This would allow

us to represent learned distributions in the form of e.g. Bayesian networks

directly in the system (without the need to map them to local conditions)

and run queries on top, representing the inferred correlations using local con-

ditions. The latter seem to be better suited for representing the incremental

correlations constructed by queries.

One further idea employed in U-relational databases is to use vertical

partitioning for representing attribute-level uncertainty , i.e., to allow to de-

compose tuples in case several fields of a tuple are independently uncertain.

Example 5.4.2 The following set of tables is a U-relational database repre-

sentation for the census data scenario of Example 5.4.1, extended by suitable

probabilities for the various alternative values the fields can take (represented

by table W).

UR[SSN] V D TID SSN

x 1 t1 185

x 2 t1 785

y 1 t2 185

y 2 t2 186

UR[M] V D TID M

v 1 t1 1

v 2 t1 2

w 1 t2 1

w 2 t2 2

w 3 t2 3

w 4 t2 4

UR[N] TID N

t1 Smith

t2 Brown

W V D P

x 1 .4

x 2 .6

y 1 .7

y 2 .3

v 1 .8

v 2 .2

w 1 .25

w 2 .25

w 3 .25

w 4 .25

5.4. REPRESENTING PROBABILISTIC DATA 45

Formally, a U-relational database consists of a set of independent random

variables with finite domains (here, x, y, v, w), a set of U-relations, and a

ternary tableW (the world-table) for representing distributions. TheW table

stores, for each variable, which values it can take and with what probability.

The schema of each U-relation consists of a set of pairs (Vi, Di) of condition

columns representing variable assignments and a set of value columns for

representing the data values of tuples.

The semantics of U-relational databases is as follows. Each possible world

is identified by a valuation θ that assigns one of the possible values to each

variable. The probability of the possible world is the product of weights of

the values of the variables. A tuple of a U-relation, stripped of its condition

columns, is in a given possible world if its variable assignments are consistent

with θ. Attribute-level uncertainty is achieved through vertical decomposi-

tioning, so one of the value columns is used for storing tuple ids and undoing

the vertical decomposition on demand.

Example 5.4.3 Consider the U-relational database of Example 5.4.2 and

the possible world

θ = {x 7→ 1, y 7→ 2, v 7→ 1, w 7→ 1}.

The probability weight of this world is .4 · .3 · .8 · .25 = .024. By removing all

the tuples whose condition columns are inconsistent with θ and projecting

away the condition columns, we obtain the relations

R[SSN] TID SSN

t1 185

t2 186

R[M] TID M

t1 1

t2 1

R[N] TID N

t1 Smith

t2 Brown

which are just a vertically decomposed version of R in the chosen possible

world. That is, R is R[SSN] ⊲⊳ R[M] ⊲⊳ R[N] in that possible world. ✷

Properties of U-relations U-relational databases are a complete repre-

sentation system for (finite) probabilistic databases [3]. This means that any

probabilistic database can be represented in this formalism. In particular, it

follows that U-relations are closed under query evaluation using any generic

46 CHAPTER 5. FORMAL FOUNDATIONS

query language, i.e., starting from a represented database, the query result

can again be represented as a U-relational database. Completeness also im-

plies that any (finite) correlation structure among tuples can be represented,

despite the fact that we currently assume that the random variables that

our correlations are constructed from (using tuple conditions) are indepen-

dent: The intuition that some form of graphical model for finite distributions

may be more powerful (i.e., able to represent distributions that cannot be

represented by U-relations) is false.

5.5 Conceptual Evaluation and Rewritings

This section gives a complete solution for efficiently evaluating a large frag-

ment of probabilistic world-set algebra using relational database technology.

Then we discuss the evaluation of the remaining operations of probabilistic

WSA, namely difference and tuple confidence. Finally, an overview of known

worst-case computational complexity results is given.

Translating queries down to the representation relations Let rep be

the representation function, which maps a U-relational database to the set of

possible worlds it represents. Our goal is to give a reduction that maps any

positive relational algebra query Q over probabilistic databases represented

as U-relational databases T to an equivalent positive relational algebra query

Q of polynomial size such that

rep(Q(T)) = {Q(Ai) | Ai ∈ rep(T)}

where the Ai are relational database instances (possible worlds) or, as a

commutative diagram,

T Q(T)

{A1, . . . ,An} {Q(A1), . . . , Q(An)}

rep

Q

Q

rep

5.5. CONCEPTUAL EVALUATION AND REWRITINGS 47

The following is such a reduction, which maps the operations of positive

relational algebra, poss, and repair-key to relational algebra over U-relational

representations:

[[R× S]] := π(UR.V D∪US .V D)→V D,sch(R),sch(S)(

UR ⊲⊳UR.V D consistentwithUS .V D
US)

[[σφR]] := σφ(UR)

[[π ~BR]] := πV D, ~B(R)

[[R ∪ S]] := UR ∪ US

[[poss(R)]] := πsch(R)(UR).

The consistency test for conditions can be expressed simply using Boolean

conditions (see Example 5.5.2, and [3]). Note that the product operation,

applied to two U-relations of k and l (Vi, Di) column pairs, respectively,

returns a U-relation with k + l (Vi, Di) column pairs.

For simplicity, let us assume that the elements of π〈 ~A〉(UR) are not yet

used as variable names. Moreover, let us assume that the B value column

of UR, which is to provide weights for the alternative values of the columns

sch(R) − (~A ∪ B) for each tuple ~a in π〈 ~A〉(UR), are probabilities, i.e., sum

up to one for each ~a and do not first have to be normalized as described in

the definition of the semantics of repair-key in Section 5.3. The operation

S := repair-key ~A@B(R) for complete relation R is translated as

US := π〈 ~A〉→V,〈(sch(R)− ~A)−{B}〉→D,sch(R)UR

with

W := W ∪ π〈 ~A〉→V,〈(sch(R)− ~A)−{B}〉→D,B→PUR.

Here, 〈·〉 turns tuples of values into atomic values that can be stored in single

fields.

That is, repair-key starting from a complete relation is just a projec-

tion/copying of columns, even though we may create an exponential number

of possible worlds.

Example 5.5.1 Consider again the relation R of Example 5.3.1, which rep-

resents information about tossing a biased coin twice, and the query S :=

repair-keyToss@FProb(R). The result is

48 CHAPTER 5. FORMAL FOUNDATIONS

US V D Toss Face FProb

1 H 1 H .4

1 T 1 T .6

2 H 2 H .4

2 T 2 T .6

W V D P

1 H .4

1 T .6

2 H .4

2 T .6

as a U-relational database. ✷

The projection technique only works if the relation that repair-key is

applied to is certain. However, this means no loss of generality (cf. [12], and

see also Example 5.3.3).

The next example demonstrates the application of the rewrite rules to

compile a query down to relational algebra on the U-relations.

Example 5.5.2 We revisit our census example with U-relations UR[SSN] and

UR[N]. We ask for possible names of persons who have SSN 185,

poss(πN(σSSN=185(R))).

To undo the vertical partitioning, the query is evaluated as

poss(πN(σSSN=185(R[SSN] ⊲⊳ R[N]))).

We rewrite the query using our rewrite rules into

πN(σSSN=185(UR[SSN] ⊲⊳ψ∧φ UR[N])),

where ψ ensures that we only generate tuples that occur in some worlds,

ψ := (UR[SSN].V = UR[N].V ⇒ UR[SSN].D = UR[N].D),

and φ ensures that the vertical partitioning is correctly undone,

φ := (UR[SSN].T ID = UR[N].T ID).

✷

5.6. ASYMPTOTIC EFFICIENCY 49

Properties of the relational-algebra reduction The relational algebra

rewriting down to positive relational algebra on U-relations has a number

of nice properties. First, since relational algebra has PTIME (even AC0)

data complexity, the query language of positive relational algebra, repair-

key, and poss on probabilistic databases represented by U-relations has the

same. The rewriting is in fact a parsimonious translation: The number

of algebra operations does not increase and each of the operations selection,

projection, join, and union remains of the same kind. Query plans are hardly

more complicated than the input queries. As a consequence, we were able

to observe that off-the-shelf relational database query optimizers do well in

practice [3].

5.6 Asymptotic Efficiency

We have seen in the previous section that for all but two operations of prob-

abilistic world-set algebra, there is a very efficient solution that builds on

relational database technology. These remaining operations are confidence

computation and relational algebra difference.

Approximate confidence computation To compute the confidence in

a tuple of data values occurring possibly in several tuples of a U-relation,

we have to compute the probability of the disjunction of the local conditions

of all these tuples. We have to eliminate duplicate tuples because we are

interested in the probability of the data tuples rather than some abstract

notion of tuple identity that is really an artifact of our representation. That

is, we have to compute the probability of a DNF, i.e., the sum of the weights

of the worlds identified with valuations θ of the random variables such that

the DNF becomes true under θ. This problem is #P-complete [8, 6]. The

result is not the sum of the probabilities of the individual conjunctive local

conditions, because they may, intuitively, “overlap”.

Example 5.6.1 Consider a U-relation with schema {V,D} (representing a

nullary relation) and two tuples 〈x, 1〉, and 〈y, 1〉, with the W relation from

Example 5.4.2. Then the confidence in the nullary tuple 〈〉 is Pr[x 7→ 1∨y 7→

1] = Pr[x 7→ 1] + Pr[y 7→ 1]− Pr[x 7→ 1 ∧ y 7→ 1] = .82. ✷

50 CHAPTER 5. FORMAL FOUNDATIONS

Confidence computation can be efficiently approximated by Monte Carlo

simulation [8, 6, 13]. The technique is based on the Karp-Luby fully poly-

nomial-time randomized approximation scheme (FPRAS) for counting the

number of solutions to a DNF formula [10, 11, 5]. There is an efficiently

computable unbiased estimator that in expectation returns the probability

p of a DNF of n clauses (i.e., the local condition tuples of a Boolean U-

relation) such that computing the average of a polynomial number of such

Monte Carlo steps (= calls to the Karp-Luby unbiased estimator) is an (ǫ, δ)-

approximation for the probability: If the average p̂ is taken over at least

⌈3·n·log(2/δ)/ǫ2⌉Monte Carlo steps, then Pr
[

|p−p̂| ≥ ǫ·p
]

≤ δ. The paper [5]

improves upon this by determining smaller numbers (within a constant factor

from optimal) of necessary iterations to achieve an (ǫ, δ)-approximation.

Avoiding the difference operation Difference R − S is conceptually

simple on c-tables. Without loss of generality, assume that S does not con-

tain tuples 〈~a, ψ1〉, . . . , 〈~a, ψn〉 that are duplicates if the local conditions are

disregarded. (Otherwise, we replace them by 〈~a, ψ1 ∨ · · · ∨ ψn〉.) For each

tuple 〈~a, φ〉 of R, if 〈~a, ψ〉 is in S then output 〈~a, φ ∧ ¬ψ〉; otherwise, output

〈~a, φ〉. Testing whether a tuple is possible in the result of a query involving

difference is already NP-hard [2]. For U-relations, we in addition have to turn

φ ∧ ¬ψ into a DNF to represent the result as a U-relation. This may lead

to an exponentially large output and a very large number of ~V ~D columns

may be required to represent the conditions. For these reasons, MayBMS

currently does not implement the difference operation.

In many practical applications, the difference operation can be avoided.

Difference is only hard on uncertain relations. On such relations, it can only

lead to displayable query results in queries that close the possible worlds

semantics using conf, computing a single certain relation. Probably the most

important application of the difference operation is for encoding universal

constraints, for example in data cleaning. But if the confidence operation is

applied on top of a universal query, there is a trick that will often allow to

rewrite the query into an existential one (which can be expressed in positive

relational algebra plus conf, without difference) [13].

5.6. ASYMPTOTIC EFFICIENCY 51

Example 5.6.2 The example uses the census scenario and the uncertain

relation R[SSN] with columns TID and SSS discussed earlier; below we will

call this relation just simply R. Consider the query of finding, for each TID

ti and SSN s, the confidence in the statement that s is the correct SSN for

the individual associated with the tuple identified by ti, assuming that social

security numbers uniquely identify individuals, that is, assuming that the

functional dependency SSN → TID (subsequently called ψ) holds. In other

words, the query asks, for each TID ti and SSN s, to find the probability

Pr[φ | ψ], where φ(ti, s) = ∃t ∈ R t.TID = ti ∧ t.SSN = s. Constraint ψ can

be thought of as a data cleaning constraint that ensures that the SSN fields

in no two distinct census forms (belonging to two different individuals) are

interpreted as the same number.

We compute the desired conditional probabilities, for each possible pair

of a TID and an SSN, as Pr[φ | ψ] = Pr[φ ∧ ψ]/Pr[ψ]. Here φ is existential

(expressible in positive relational algebra) and ψ is an equality-generating

dependency (i.e., a special universal query) [1]. The trick is to turn relational

difference into the subtraction of probabilities, Pr[φ∧ψ] = Pr[φ]−Pr[φ∧¬ψ]

and Pr[ψ] = 1− Pr[¬ψ], where ¬ψ = ∃t, t′ ∈ R t.SSN = t′.SSN ∧ t.T ID 6=

t′.T ID is existential (with inequalities). Thus ¬ψ and φ∧¬ψ are expressible

in positive relational algebra. This works for a considerable superset of the

equality-generating dependencies [13], which in turn subsume useful data

cleaning constraints.

Let R¬ψ be the relational algebra expression for ¬ψ,

π∅(R ⊲⊳TID=TID′∧SSN 6=SSN ′ ρTID→TID′;SSN→SSN ′(R)),

and let S be

ρP→Pφ(conf(R)) ⊲⊳ ρP→Pφ∧¬ψ

(

conf(R×R¬ψ) ∪

πTID,SSN,0→P (conf(R)− conf(R×R¬ψ))
)

× ρP→P¬ψ
(conf(R¬ψ)).

The overall example query can be expressed as

T := πTID,SSN,(Pφ−Pφ∧¬ψ)/(1−P¬ψ)→P (S).

For the example table R given above, S and T are

52 CHAPTER 5. FORMAL FOUNDATIONS

Language Fragment Complexity

Pos.RA + repair-key + possible in AC0

RA + possible co-NP-hard

Conjunctive queries + conf #P-hard

Probabilistic WSA in P#P

Pos.RA + repair-key + possible

+ approx.conf + egds in PTIME

Figure 5.2: Complexity results for (probabilistic) world-set algebra [14]. RA

denotes relational algebra.

S TID SSN Pφ Pφ∧¬ψ P¬ψ

t1 185 .4 .28 .28

t1 785 .6 0 .28

t2 185 .7 .28 .28

t2 186 .3 0 .28

T TID SSN P

t1 185 1/6

t1 785 5/6

t2 185 7/12

t2 186 5/12

Complexity Overview Figure 5.2 gives an overview over the known com-

plexity results for the various fragments of probabilistic WSA.

Difference [2] and confidence computation [6] independently make queries

NP-hard. Full probabilistic world-set algebra is essentially not harder than

the language of [6], even though it is substantially more expressive.

It is worth noting that repair-key by itself, despite the blowup of possible

worlds, does not make queries hard. For the language consisting of positive

relational algebra, repair-key, and poss, we have shown by construction that it

has PTIME complexity: We have given a positive relational algebra rewriting

to queries on the representations earlier in this section. Thus queries are even

in the highly parallelizable complexity class AC0.

The final result in Figure 5.2 concerns the language consisting of the pos-

itive relational algebra operations, repair-key, (ǫ, δ)-approximation of confi-

dence computation, and the generalized equality generating dependencies of

[13] for which we can rewrite difference of uncertain relations to difference

of confidence values (see Example 5.6.2). The result is that queries of that

5.6. ASYMPTOTIC EFFICIENCY 53

language that close the possible worlds semantics – i.e., that use conf to

compute a certain relation – are in PTIME overall.

54 CHAPTER 5. FORMAL FOUNDATIONS

Chapter 6

The MayBMS Query and

Update Language

6.1 Language Overview

This section describes the query and update language of MayBMS, which is

based on SQL. In fact, our language is a generalization of SQL on classical

relational databases. To simplify the presentation, a fragment of the full

language supported in MayBMS is presented here.

The representation system used in MayBMS, U-relations, has as a special

case classical relational tables, that is, tables with no condition columns. We

will call these tables typed-certain (t-certain) tables in this section. Tables

that are not t-certain are called uncertain. Note that this notion of certainty

is purely syntactic, and

cert(R) = πsch(R)(σP=1(conf(R)))

may well be equal to the projection of a U-relation UR to its attribute (non-

condition) columns despite R not being t-certain according to this definition.

Aggregates In MayBMS, full SQL is supported on t-certain tables. Be-

yond t-certain tables, some restrictions are in place to assure that query

evaluation is feasible. In particular, we do not support the standard SQL

55

56 CHAPTER 6. THE MAYBMS QUERY AND UPDATE LANGUAGE

aggregates such as sum or count on uncertain relations. This can be eas-

ily justified: In general, these aggregates will produce exponentially many

different numerical results in the various possible worlds, and there is no

way of representing these results efficiently. However, MayBMS supports a

different set of aggregate operations on uncertain relations. These include

the computations of expected sums and counts (using aggregates esum and

ecount).

Moreover, the confidence computation operation is an aggregate in the

MayBMS query language. This is a deviation from the language flavor of our

algebra, but there is a justification for this. The algebra presented earlier

assumed a set-based semantics for relations, where operations such as pro-

jections automatically remove duplicates. In the MayBMS query language,

just like in SQL, duplicates have to be eliminated explicitly, and confidence is

naturally an aggregate that computes a single confidence value for each group

of tuples that agree on (a subset of) the non-condition columns. By using

aggregation syntax for conf and not supporting select distinct on uncer-

tain relations, we avoid a need for conditions beyond the special conjunctions

that can be stored with each tuple in U-relations.

All supported aggregates on uncertain tables produce t-certain tables.

Duplicate tuples SQL databases in general support multiset tables, i.e.,

tables in which there may be duplicate tuples. There is no conceptual dif-

ficulty at all in supporting multiset U-relations. In fact, since U-relations

are just relations in which some columns are interpreted to have a special

meaning (conditions), just storing them in a standard relational database

management system which supports duplicates in tables yields support for

multiset U-relations.

Syntax The MayBMS query language is compositional and built from un-

certain and t-certain queries. The uncertain queries are those that produce

a possibly uncertain relation (represented by a U-relation with more than

zero V and D columns). Uncertain queries can be constructed, inductively,

from t-certain queries, select-from-where queries over uncertain tables, the

multiset union of uncertain queries (using the SQL union construct), and the

6.1. LANGUAGE OVERVIEW 57

repair-key and pick-tuples statements that can be specified as follows

repair key <attributes> in

(<t-certain-query> | <t-certain-relation>)

[weight by <expression>];

pick tuples from

<t-certain-query> | <t-certain-relation>

[independently]

[with probability <expression>];

Note that repair-key is a query, rather than an update statement. Details

on these constructs can be found in Section 6.2, Language reference.

The select-from-where queries may use any t-certain subqueries in the

conditions, plus uncertain subqueries in atomic conditions of the form

<tuple> in <uncertain-query>

that occur positively in the condition. (That is, if the condition is turned

into DNF, these literals are not negated.)

The t-certain queries (i.e., queries that produce a t-certain table) are

given by

• all constructs of SQL on t-certain tables and t-certain subqueries, ex-

tended by a new aggregate

argmax(<argument-attribute>, <value-attribute>)

which outputs one of the argument-attribute values in the current

group (determined by the group-by clause) whose tuples have a maxi-

mum value-attribute value within the group. Thus, this is the typ-

ical argmax construct from mathematics added as an SQL extension.

• select-from-where-group-by on uncertain queries using the possible

construct for computing possible tuples, or the aggregates conf, esum,

and ecount, but none of the standard SQL aggregates. There is an

exact and an approximate version of the conf aggregate. The latter

takes two parameters ǫ and δ (see the earlier discussion of the Karp-

Luby FPRAS).

58 CHAPTER 6. THE MAYBMS QUERY AND UPDATE LANGUAGE

The aggregates esum and ecount compute expected sums and counts

across groups of tuples. While it may seem that these aggregates are at

least as hard as confidence computation (which is #P-hard), this is in fact

not so. These aggregates can be efficiently computed exploiting linearity of

expectation. A query

select A, esum(B) from R group by A;

is equivalent to a query

select A, sum(B * P) from R’ group by A;

where R’ is obtained from the U-relation of R by replacing each local condition

V1, D1, . . . , Vk, Dk by the probability Pr[V1 = D1 ∧ · · · ∧ Vk = Dk], not

eliminating duplicates. That is, expected sums can be computed efficiently

tuple by tuple, and only require to determine the probability of a conjunction,

which is easy, rather than a DNF of variable assignments as in the case of

the conf aggregate. The ecount aggregate is a special case of esum applied

to a column of ones.

Example 6.1.1 The query of Example 5.3.2 can be expressed in the query

language of MayBMS as follows. Let R be repair key in Coins weight

by Count and let S be

select R.Type, Toss, Face

from (repair key Type, Toss in (select * from Faces, Tosses)

weight by FProb) S0, R

where R.Type = S0.Type;

It is not hard to verify that πToss,Face(S) 6= Ev exactly if there exist tuples

~s ∈ S,~t ∈ Ev such that ~s.Toss = ~t.Toss and ~s.Face 6= ~t.Face. Let C be

select S.Type from S, Ev

where S.Toss = Ev.Toss and S.Face <> Ev.Face;

Then we can compute Q using the trick of Example 5.6.2 as

6.1. LANGUAGE OVERVIEW 59

select Type, (P1-P2)/(1-P3) as P

from (select Type, conf() as P1 from S group by Type) Q1,

((select Type, conf() as P2 from C group by Type)

union

(

(select Type, 0 as P2 from Coins)

except

(select Type, 0 as P2 from

(select Type, conf() from C group by Type) Dummy)

)) Q2,

(select conf() as P3 from C) Q3

where Q1.Type = Q2.Type;

The argmax aggregate can be used to compute maximum-a-posteriori

(MAP) and maximum-likelihood estimates. For example, the MAP coin

type

argmaxType Pr[evidence is twice heads ∧ coin type is Type]

can be computed as select argmax(Type, P) from Q because the normal-

izing factor (1-P3) has no impact on argmax. Thus, the answer in this

example is the double-headed coin. (See table Q of Figure 5.1: The fair coin

has P = 1/3, while the double-headed coin has P = 2/3.)

The maximum likelihood estimate

argmaxType Pr[evidence is twice heads | coin type is Type]

can be computed as

select argmax(Q.Type, Q.P/R’.P)

from Q, (select Type, conf() as P from R) R’

where Q.Type = R’.Type;

Here, again, the result is 2headed, but this time with likelihood 1. (The fair

coin has likelihood 1/4). ✷

60 CHAPTER 6. THE MAYBMS QUERY AND UPDATE LANGUAGE

Supported Queries MayBMS supports full SQL on t-certain tables. In

addition it supports a large subset of SQL on t-uncertain tables, with even

more features supported when fragments of the uncertain query involve t-

certain subqueries. The following restrictions apply:

• Exact aggregates and duplicate elimination using distinct in a select

statement are supported as long as the from clause subqueries and the

subqueries in the where condition are t-certain.

• If a t-certain subquery Q in the where condition of a select statement

contains references to t-uncertain tables, then the containing query is

supported if Q is not correlated with it.

• The set operations except and union with duplicate elimination are

supported when both the left and the right argument are t-certain

queries.

• repair-key and pick-tuples are supported on t-certain queries.

Restrictions on the update statements are discussed below.

Updates MayBMS supports the usual schema modification and update

statements of SQL. In fact, our use of U-relations makes this quite easy. An

insertion of the form

insert into <uncertain-table> (<uncertain-query>);

is just the standard SQL insertion for tables we interpret as U-relations.

Thus, the table inserted into must have the right number (that is, a sufficient

number) of condition columns. Schema-modifying operations such as

create table <uncertain-table> as (<uncertain-query>);

are similarly straightforward. A deletion

delete from <uncertain-table>

where <condition>;

6.2. LANGUAGE REFERENCE 61

admits conditions that refer to the attributes of the current tuple and may

use t-certain subqueries. One can also update an uncertain table with an

update statement

update <uncertain-table>

set <attribute> = <expr> [,...]

where <condition>;

where the set list does not modify the condition columns and the where con-

dition satisfies the same conditions as that of the delete statement. MayBMS

allows users to insert a constant tuple by specifying values for the data

columns in an insert statement:

insert into <uncertain-table> [<attribute_list>] <tuple>;

6.2 Language Reference

We next discuss the extensions to SQL by MayBMS. For a description of

the standard SQL constructs please see the Postgres SQL language reference

available at

http://www.postgresql.org/docs/8.3/interactive/sql-commands.html

6.2.1 repair-key

Syntax:

repair key <attributes> in

(<t-certain-query> | <t-certain-relation>)

[weight by <expression>]

Description: The repair-key operation turns a t-certain-query (or, as

a special case, a t-certain-relation) into the set of worlds consisting of all

possible maximal repairs of key attributes. A repair of key ~A in relation R is

a subset of R for which ~A is a key. We say that relation R′ is a maximal repair

of a functional dependency for relation R if R′ is a maximal subset of R which

satisfies that functional dependency. The numerically-valued expression is

http://www.postgresql.org/docs/8.3/interactive/sql-commands.html

62 CHAPTER 6. THE MAYBMS QUERY AND UPDATE LANGUAGE

used for weighting the newly created alternative repairs. If the weight by

clause is omitted, a uniform probability distribution is assumed among all

tuples with the same key. Suppose there are n tuples sharing the same key,

each of them is associated with a probability of 1/n. If the weight is specified

by expression, the value of expression will be the probability of the tuple

before normalization. Suppose there are n tuples sharing the same key, tuple

ti is associated with probability expressioni /
∑n

k=1 expressionk. In either

case, the sum of the probabilities among all tuples with the same key is 1.

There will be an error message if the value of expression in any tuple is

negative. The tuples for which probability is 0 are ignored and not included

in any resulting possible world.

repair-key can be placed wherever a select statement is allowed in SQL.

See Section 5.3 for more details on repair-key.

Example: Suppose Customer is a certain relation with columns ID and

name, the following query performs a repair-key operation on column ID

in Customer:

repair key ID in Customer;

Suppose Accounts is a certain relation with columns ID and account,

the following is an example of repair-key operation on column ID in the

output of a certain query:

repair key ID in

(select * from Customer natural join Accounts);

6.2.2 pick-tuples

Syntax:

pick tuples from

<t-certain-query> | <t-certain-relation>

[independently]

[with probability <expression>];

6.2. LANGUAGE REFERENCE 63

Description: The pick-tuples operation generates the set of worlds which

can be obtained from a t-certain-query or a t-certain-relation by selecting a

subset of the tuples of that query or relation. In the current version of

MayBMS, the presence of independently does not affect query evaluation.

It is the default; in the future, MayBMS may be extended by other options.

By default, every tuple in a possible world is associated with probability

0.5. If with probability expression is specified, the numerical value of

expression is the probability of the tuple. Note that only values in (0,1] are

valid. There will be an error message if the value of expression is negative

or larger than 1. Tuples for which expression are 0 are ignored.

pick-tuples can be placed wherever a select statement is allowed in

SQL.

6.2.3 possible

Syntax:

select possible <attributes> from <query> | <relation>;

Description: The operation possible selects the set of tuples appearing in

at least one possible world. This construct is a shortcut for the query which

selects all distinct tuples with confidence greater than zero:

select distinct <attributes> from

(select <attributes>, tconf() as conf from <query> | <relation>

where conf > 0) Q;

Example: Suppose R and S are uncertain relations, the following query

displays distinct pairs (A,B) with positive probabilities.

select possible A, B from R, S;

6.2.4 Confidence computation and approximate aggre-

gates

argmax, conf, aconf, tconf, esum and ecount are functions introduced by

MayBMS. Following is the summary of the functions.

64 CHAPTER 6. THE MAYBMS QUERY AND UPDATE LANGUAGE

Name Brief Description

argmax(argument, value) Returns the argument with the maximum value.

conf() Returns the exact confidence of distinct tuples.

conf(approach, ǫ) Returns the approximate confidence of distinct tuples.

aconf(ǫ, δ) Returns the approximate confidence of distinct tuples.

tconf() Returns the exact confidence of tuples.

esum(attribute) Returns the expected sum over distinct tuples.

ecount(attribute) Returns the expected count over distinct tuples.

6.2.4.1 argmax(argument-attribute, value-attribute)

Outputs an argument-attribute value in the current group (determined

by the group-by clause) whose tuples have a maximum value-attribute

value within the group. If there are several tuples sharing the same maxi-

mum value-attribute value with different argument-attribute values, an

arbitrary value among them is returned. For example,

select location, argmax(date, temperature)

from weather_reports

group by location;

retrieves one of the dates with the highest temperature for each location.

argmax can be used on all relations and queries.

6.2.4.2 conf()

Syntax:

select <attribute | conf()> [, ...]

from <query> | <relation>

group by <attributes>;

Description: Computes for each possible distinct tuple of attribute values

of the target list that occurs in an uncertain relation in at least one possible

world, the sum of the probabilities of the worlds in which it occurs. conf can

only be used on a t-uncertain query or a t-uncertain relation and the output

of the query is a t-certain relation.

6.2. LANGUAGE REFERENCE 65

Example: Suppose weather forecast is an uncertain relation storing infor-

mation regarding weather prediction, the following query computes the prob-

ability of each weather condition for each location:

select location, weather, conf()

from weather_forecast

group by location, weather;

6.2.4.3 tconf()

Syntax:

select <attribute | tconf()> [, ...]

from <query> | <relation>;

Description: Computes for each possible tuple the sum of the probabilities

of the worlds where it appears. tconf() is different from conf() in that it

does not eliminate duplicates. tconf can only be used on a t-uncertain query

or a t-uncertain relation and the output of the query is a t-certain relation.

6.2.4.4 conf(approach, ǫ)

Syntax:

select <attribute | conf(<approach>, <epsilon>)> [, ...]

from <query> | <relation>

group by <attributes>;

Description: Computes for each possible distinct tuple of the target list

that occurs in at least one possible world, the approximate sum of the prob-

abilities of the worlds in which it occurs. approach specifies the approxima-

tion approach, namely, ‘R’ and ‘A’ are relative and absolute approximation,

respectively. Let p be the exact sum (computed by conf()) and p̂ be the ap-

proximate sum (computed by conf(approach, ǫ)), the approximation has

the following property:

• Relative approximation: |p− p̂| ≤ ǫ · p

66 CHAPTER 6. THE MAYBMS QUERY AND UPDATE LANGUAGE

• Absolute approximation: |p− p̂| ≤ ǫ

conf(approach, ǫ) can only be used on a t-uncertain query or a t-

uncertain relation and the output of the query is a t-certain relation.

6.2.4.5 aconf(ǫ, δ)

Syntax:

select <attribute | aconf(<epsilon>, <delta>)> [, ...]

from <query> | <relation>

group by <attributes>;

Description: Computes for each possible distinct tuple of the target list that

occurs in at least one possible world, the approximate sum of the probabilities

of the worlds in which it occurs. Let p be the exact sum (computed by conf)

and p̂ be the approximate sum (computed by aconf), the approximation has

the following property: Pr
[

|p− p̂| ≥ ǫ · p
]

≤ δ.

See the earlier discussion of the Karp-Luby FPRAS for more details.

aconf can only be used on a t-uncertain query or a t-uncertain relation and

the output of the query is a t-certain relation.

Remark: Although both conf(approach, ǫ) and aconf output approxi-

mate confidence for distinct tuples, there are three major differences between

them:

• The underlying techniques for conf(approach, ǫ) and aconf are d-

tree approximation algorithm [16] and Karp-Luby FPRAS, respectively.

The former is a deterministic algorithm and outputs the same probabil-

ity if the databases and queries are identical while the latter is random-

ized and likely to output different probabilities even if the databases

and queries are identical.

• conf(approach, ǫ) provides both absolute and relative approximation

while aconf only allows the latter.

• conf(approach, ǫ) outputs an ǫ-approximation certainly while aconf

guarantees it with probability 1− δ.

6.2. LANGUAGE REFERENCE 67

6.2.4.6 esum and ecount

Syntax:

select <attribute | esum(<attribute>) | ecount()> [, ...]

from <query> | <relation>

group by <attributes>;

Description: esum and ecount compute expected sum and count, respec-

tively. ecount can take zero or one argument, and the number of arguments

does not affect the results. esum and ecount can only be used on a t-uncertain

query or a t-uncertain relation and the output of the query is a t-certain re-

lation.

Example: The following query computes the expected total rainfall of seven

days for each location:

select location, esum(rainfall)

from rainfall_forecast

where date >= ’2010-10-01’ and date <= ’2010-10-07’

group by location;

68 CHAPTER 6. THE MAYBMS QUERY AND UPDATE LANGUAGE

Chapter 7

MayBMS Internals

Representations, relational encoding, and query optimization Our

representation system, U-relations, is basically implemented as described ear-

lier, with one small exception. With each pair of columns Vi, Di in the condi-

tion, we also store a column Pi for the probability weight of alternative Di for

variable Vi, straight from the W relation. While the operations of relational

algebra, as observed earlier, do not use probability values, confidence com-

putation does. This denormalization (the extension by Pi columns) removes

the need to look up any probabilities in the W table in our exact confidence

computation algorithms.

Our experiments show that the relational encoding of positive relational

algebra which is possible for U-relations is so simple – it is a parsimonious

transformation, i.e., the number of relational algebra operations is not in-

creased – that the standard Postgres query optimizer actually does well at

finding good query plans (see [3]).

Approximate confidence computation MayBMS implements both an

approximation algorithm and several exact algorithms for confidence com-

putation. The approximation algorithm is a combination of the Karp-Luby

unbiased estimator for DNF counting [10, 11] in a modified version adapted

for confidence computation in probabilistic databases (cf. e.g. [13]) and the

Dagum-Karp-Luby-Ross optimal algorithm for Monte Carlo estimation [5].

The latter is based on sequential analysis and determines the number of invo-

69

70 CHAPTER 7. MAYBMS INTERNALS

cations of the Karp-Luby estimator needed to achieve the required bound by

running the estimator a small number of times to estimate its mean and vari-

ance. We actually use the probabilistic variant of a version of the Karp-Luby

estimator described in the book [18] which computes fractional estimates that

have smaller variance than the zero-one estimates of the classical Karp-Luby

estimator.

Exact confidence computation Our exact algorithm for confidence com-

putation is described in [15]. It is based on an extended version of the Davis-

Putnam procedure [7] that is the basis of the best exact Satisfiability solvers

in AI. Given a DNF (of which each clause is a conjunctive local condition),

the algorithm employs a combination of variable elimination (as in Davis-

Putnam) and decomposition of the DNF into independent subsets of clauses

(i.e., subsets that do not share variables), with cost-estimation heuristics for

choosing whether to use the former (and for which variable) or the latter.

Example 7.0.1 Consider the U-relation U representing a nullary table and

the W table of Figure 7.1. The local conditions of U are

Φ = {{x 7→ 1}, {x 7→ 2, y 7→ 1}, {x 7→ 2, z 7→ 1}, {u 7→ 1, v 7→ 1}, {u 7→ 2}}.

The algorithm proceeds recursively. We first choose to exploit the fact

that the Φ can be split into two independent sets, the first using only the

variables {x, y, z} and the second only using {u, v}. We recurse into the first

set and eliminate the variable x. This requires us to consider two cases, the

alternative values 1 and 2 for x (alternative 3 does not have to be considered

because in each of the clauses to be considered, x is mapped to either 1 or

2. In the case that x maps to 2, we eliminate x from the set of clauses

that are compatible with the variable assignment x 7→ 2, i.e., the set {{y 7→

1}, {z 7→ 1}}, and can decompose exploiting the independence of the two

clauses. Once y and z are eliminated, respectively, the conditions have been

reduced to “true”. The alternative paths of the computation tree, shown in

Figure 7.1, are processed analogously.

On returning from the recursion, we compute the probabilities of the

subtrees in the obvious way. For two independent sets S1, S2 of clauses with

71

U V1 D1 V2 D2

x 1 x 1

x 2 y 1

x 2 z 1

u 1 v 1

u 2 u 2

W V D P

x 1 .1

x 2 .4

x 3 .5

y 1 .2

y 2 .8

z 1 .4

z 2 .6

u 1 .7

u 2 .3

v 1 .5

v 2 .5

0.7578
⊗

0.308
⊕

{x, y, z}

1.0

∅

x
.1
7→ 1

0.52
⊗

x
.4
7→ 2

0.2
⊕

{y}

1.0

∅

y
.2
7→ 1

0.4
⊕

{z}

1.0

∅

z
.4
7→ 1

0.65
⊕

{u, v}

0.5
⊕

u
.7
7→ 1

1.0

∅

v
.5
7→ 1

1.0

∅

u
.3
7→ 2

Figure 7.1: Exact confidence computation.

72 CHAPTER 7. MAYBMS INTERNALS

probabilities p1 and p2, the probability of S1 ∪ S2 is

1− (1− p1) · (1− p2).

For variable elimination branches, the probability is the sum of the prod-

ucts of the probabilities of the subtrees and the probabilities of the variable

assignments used for elimination.

It is not hard to verify that the probability of Φ, i.e., the confidence in

tuple 〈〉, is 0.7578. ✷

Our exact algorithm solves a #P-hard problem and exhibits exponen-

tial running time in the worst case. However, like some other algorithms

for combinatorial problems, this algorithm shows a clear easy-hard-easy pat-

tern. Outside a narrow range of variable-to-clause count ratios, it very pro-

nouncedly outperforms the (polynomial-time) approximation techniques [15].

It is straightforward to extend this algorithm to condition a probabilistic

database (i.e., to compute “assert”) [15].

Hierarchical queries The tuple-independent databases are those proba-

bilistic databases in which, for each tuple, a probability can be given such

that the tuple occurs in the database with that probability and the tuples

are uncorrelated. It is known since the work of Dalvi and Suciu [6] that

there is a class of conjunctive queries, the hierarchical queries Q, for which

computing conf(Q) exactly on tuple-independent probabilistic databases is

feasible in polynomial time.

In fact, these queries can essentially be computed using SQL queries that

involve several nested aggregate-group-by queries. On the other hand, it was

also shown in [6] that for any conjunctive query Q that is not hierarchical,

computing conf(Q) is #P-hard with respect to data complexity. Dalvi and

Suciu introduce the notion of safe plans that are at once certificates that a

query is hierarchical and query plans with aggregation operators that can be

used for evaluating the queries.

To deal with hierarchical queries, MayBMS runs SPROUT as part of its

query engine [17]. SPROUT extends the early work by Suciu in three ways.

First, the observation is used that in the case that a query has a safe plan [6],

73

it is not necessary to use that safe plan for query evaluation. Instead, one

can choose any unrestricted query plan, not only restricted safe plans, for the

computation of the answer tuples; confidence computation is performed as

an aggregation which can be pushed down or pull up past joins in relational

query plans. Second, the aggregation function for confidence computation is

implemented as a special low-level operator in the query engine. Finally, the

fact is exploited that the #P-hardness result for any single nonhierarchical

query of [6] only applies as long as the problem is that of evaluating the

query on an arbitrary probabilistic database of suitable schema. If further

information about permissible databases is available in the form of functional

dependencies that the databases must satisfy, then a larger class of queries

can be processed by our approach [17].

Updates, concurrency control and recovery As a consequence of our

choice of a purely relational representation system, these issues cause surpris-

ingly little difficulty. U-relations are just relational tables and updates are

just modifications of these tables that can be expressed using the standard

SQL update operations. While the structure of the rewritings could allow for

optimizations in the concurrency and recovery managers, those are currently

left to the underlying DBMS.

74 CHAPTER 7. MAYBMS INTERNALS

Chapter 8

The MayBMS Codebase

MayBMS is currently implemented in PostgreSQL 8.3.3. Integration into an

existing full-fledged DBMS brings two major advantages. First, integration

makes it possible to reuse the internal functions and structures of the DBMS.

Secondly, it often increases the efficiency of query processing.

Figures 8.1 and 8.2 give a list of source files modified or added to the

original PostgreSQL 8.3.3. All modifications are explicitly marked in the

source files by

/* MAYBMS BEGIN */

... [some code goes here]

/* MAYBMS END */

All files in directory maybms are newly created and the others are existing files

in PostgreSQL8.3.3. Header files (*.h) refer to src/include/directory/filename.

Source files (*.c and *.y) refer to src/backend/directory/filename.

75

76 CHAPTER 8. THE MAYBMS CODEBASE

File Description

parser/gram.y Adds new constructs such as repair-key and possible.

parser/keyword.c Adds necessary keywords.

nodes/parsenodes.h Adds the relation type to structure CreatStmt.

catalog/pg class.h Adds an extra column specifying the type of a relation

catalog/pg attribute.h in the catalog.

nodes/copyfuncs.c Copying the relation type.

catalog/heap.c Execution of creating urelations.

catalog/heap.h An argument tabletype is added to function

catalog/toasting.c heap create with catalog in heap.h.

commands/tablecmds.c All files accessing this function are modified.

commands/cluster.c

bootstrap/bootparse.y

executor/execMain.c

Figure 8.1: Files related to U-relation creation.

77

File Description

catalog/pg proc.h Registers conf, tconf, aconf, argmax, esum, ecount

and the related functions.

catalog/pg aggregate.h Specifies the relationships between conf, aconf and

the related state, final functions.

nodes/execnodes.h Adds confidence computation states to structure AggState.

executor/nodeAgg.c

tcop/postgres.c Access point to query rewriting.

maybms/conf comp.h Prototypes for conf, tconf, aconf and their related functions.

maybms/SPROUT.c Confidence computation of conf for hierarchical

queries on tuple-independent U-relations using SPROUT.

maybms/tupleconf.c Confidence computation for tconf.

maybms/ws-tree.c Confidence computation of conf for arbitrary

U-relations using ws-tree-based algorithm.

maybms/bitset.h Auxiliary files for ws-tree-based algorithm.

maybms/bitset.c

maybms/aconf.c Implementation of approximate confidence computation.

maybms/signature.h Derives signatures for hierarchical queries.

maybms/signature.c

maybms/repair key.c Implementation of repair-key construct by pure rewriting.

maybms/pick tuples.c Implementation of pick-tuples construct by pure rewriting.

maybms/localcond.h Storing the condition columns for confidence computation.

maybms/localcond.c

maybms/argmax.c Implementation of aggregate function argmax.

maybms/rewrite.c Rewriting of select and create commands involving uncertainty.

maybms/rewrite utils.c

maybms/rewrite updates.c Rewriting of update commands (insert, delete, update).

maybms/supported.c Checking whether a query is supported and should be rewritten.

maybms/utils.h Utility functions.

maybms/utils.c

Figure 8.2: Files related to confidence computation and query rewriting.

78 CHAPTER 8. THE MAYBMS CODEBASE

Chapter 9

Experiments

This section reports on experiments performed with the first MayBMS release

(beta) and a benchmark consisting of two parts, which are described in more

detail in the remainder of this chapter:

1. Computing the probability of triangles in random graphs.

2. A modified subset of the TPC-H queries on uncertain TPC-H datasets.

By this benchmark, we do not attempt to simulate a representative set of

use cases: the jury is still out on what such a set of use cases might be. In-

stead, we focus on a benchmark that allows us to see how the performance of

MayBMS develops across releases on the two core technical problems solved

by MayBMS: polynomial-time query evaluation for the polynomial-time frag-

ment of our query language and the efficient approximation of query results

for queries that do not belong to the polynomial-time fragment. (Finding

triangles in random graphs is a near-canonical example of such queries.)

We will keep monitoring the development of the state of the art and

will continue to survey applications and collect use cases; we will extend or

replace this benchmark as consensus develops regarding the most important

applications of probabilistic databases.

Experimental setup. All the experiments reported on in this chapter were

conducted on an Athlon-X2(4600+)64bit / 1.8GB / Linux2.6.20 / gcc4.1.2

machine.

79

80 CHAPTER 9. EXPERIMENTS

9.1 Random Graphs

9.1.1 Experiments with Varying Levels of Precision

In this experiment, we create undirected random graphs in which the presence

of each edge is independent of that of the other edges. The probability that

an edge is in the graph is 0.5 and this applies to each edge. Then we compute

the probability that there exists a triangle in the graphs using approximation.

The queries can be found in Appendix A.

We report wall-clock execution times of queries run in the PostgreSQL8.3.3

psql shell with a warm cache obtained by running a query once and then

reporting the average execution time over three subsequent, identical execu-

tions. Figure 9.1 shows the execution time of approximation with different

precision parameters for random graphs composed of 5 to 33 nodes. An (ǫ, δ)

approximation has the following property: let p be the exact probability and

p̂ be the approximate probability, then Pr
[

|p− p̂| ≥ ǫ · p
]

≤ δ.

9.1.2 Experiments with Different Edge Probabilities

In the previous experiments, each edge had probability 0.5. We use other val-

ues as the edge probability(all edges still have the same probability) and run

the experiment again with (0.05,0.05) approximation. The SQL statements

in Appendix A should be modified accordingly. Let p be the probability,

change the following statements

insert into inout values (1, 0.5);

insert into inout values (0, 0.5);

to

insert into inout values (1, p);

insert into inout values (0, 1 - p);

Figure 9.2 shows the execution time for queries of random graphs composed

of 25 to 101 nodes with different fixed edge probabilities.

9.1. RANDOM GRAPHS 81

#nodes #clauses
Execution Time(Seconds)

(.05,.05) (.01,.01) (.005,.005) (.001,.001)

5 10 0.01 0.03 0.11 2.08

6 20 0.01 0.08 0.26 5.27

7 35 0.02 0.14 0.46 9.15

8 56 0.03 0.22 0.7 12.49

9 84 0.04 0.28 0.85 14.95

10 120 0.08 0.44 1.13 16.19

11 165 0.15 0.60 1.60 17.98

12 220 0.29 1.24 2.48 24.31

13 286 0.55 2.38 4.74 35.29

14 364 0.98 4.26 8.38 51.51

15 455 1.56 6.74 13.29 73.00

16 560 2.37 10.26 19.21 102.97

17 680 3.46 14.6 28.76 144.02

18 816 4.92 20.49 41.1 206.18

19 969 7.03 28.52 56.43 291.21

20 1140 9.97 39.72 81.01 395.18

21 1330 14.74 57.13 123.79 597.86

22 1540 23.94 119.81 218.62 600+

23 1771 46.21 204.83 416.42 600+

24 2024 79.03 411.67 600+ 600+

25 2300 115.64 515.65 600+ 600+

26 2600 159.66 600+ 600+ 600+

27 2925 202.98 600+ 600+ 600+

28 3276 251.82 600+ 600+ 600+

29 3654 312.89 600+ 600+ 600+

30 4060 387.72 600+ 600+ 600+

31 4495 475.78 600+ 600+ 600+

32 4960 582.4 600+ 600+ 600+

33 5456 600+ 600+ 600+ 600+

Figure 9.1: Comparison between execution time of approximation with dif-

ferent precision

82 CHAPTER 9. EXPERIMENTS

#nodes #clauses
Execution Time(Seconds)

p=0.5 p=0.1 p=0.05

25 2300 115.64 1.77 0.55

30 4060 387.72 4.13 1.35

31 4495 475.78 4.94 1.54

32 4960 582.40 5.72 1.82

33 5456 600+ 6.87 2.12

35 6545 600+ 8.74 2.74

40 9880 600+ 18.32 5.06

45 14190 600+ 36.77 8.96

50 19600 600+ 70.79 15.79

55 26235 600+ 123.69 21.97

60 34220 600+ 214.06 33.94

65 43680 600+ 343.66 47.09

68 50116 600+ 451.06 59.87

69 52934 600+ 490.64 64.69

70 54740 600+ 542.61 68.98

71 57155 600+ 595.03 72.88

72 59640 600+ 600+ 82.30

75 67525 600+ 600+ 106.49

80 82160 600+ 600+ 154.92

85 98770 600+ 600+ 224.3

90 117480 600+ 600+ 316.28

95 138415 600+ 600+ 437.39

97 147440 600+ 600+ 510.39

98 152096 600+ 600+ 543.87

99 156849 600+ 600+ 558.44

100 161700 600+ 600+ 593.84

101 166650 600+ 600+ 600+

Figure 9.2: Comparison between execution time of queries of random graphs

with different fixed edge probabilities

9.2. PROBABILISTIC TPC-H 83

9.1.3 Experiments with General Random Graphs

The previous experiments were conducted on undirected graphs in which ev-

ery pair of nodes had a possibly present edge. However, this may not be

the case in general. In many scenarios, each pair of nodes may have a cer-

tainly present, certainly absent or possibly present edge. In our following

experiments, we construct such general probabilistic random graphs from

data representing directed links between webpage within nd.edu domain1.

If a link between two pages is absent from the data, then it is also absent

from our graphs. If a link is present in the data, then it is a certainly or

possibly present edge in our graphs. We run again the queries computing

the probabilities of existence of triangles in such graphs with (0.05,0.05) ap-

proximation. The probabilities that possibly present edges are in the graphs

are randomly distributed in (0,0.1). The queries of the graph constructions

and confidence computation can be found in Appendix B. Figure 9.3 shows

the execution time for queries of such random graphs composed of 1000 to

30000 nodes.

9.2 Probabilistic TPC-H

SPROUT2 is a part of the query engine of MayBMS and provides state-of-the-

art techniques for efficient exact confidence computation. In this section, we

show how TPC-H queries can benefit from these techniques. For each TPC-H

query, we consider its largest subquery without aggregations and inequality

joins but with conf() for specifying exact probability computation for distinct

tuples in query answers. We consider two flavours of each of these queries:

A version with original selection attributes (again, without aggregations),

and a version where we drop keys from the selection attributes. Queries are

included in the experiments if SPROUT’s techniques can be applied to them.

Our data set consists of tuple-independent probabilistic databases obtained

from deterministic databases produced by TPC-H 2.7.0 by associating each

tuple with a Boolean random variable and by choosing at random a probabil-

1http://www.nd.edu/ networks/resources/www/www.dat.gz
2http://web.comlab.ox.ac.uk/projects/SPROUT/index.html

84 CHAPTER 9. EXPERIMENTS

#nodes #possible edges #clauses Execution Time(Seconds)

1000 3271 6367 4.04

2000 6446 12598 11.84

3000 9056 19836 21.88

4000 11366 22455 28.57

5000 13497 24574 31.38

6000 16095 25731 35.36

7000 17958 26070 35.82

8000 23113 39481 80.14

9000 26114 43369 115.45

10000 32975 51586 140.00

11000 35507 55562 157.34

12000 37623 57260 170.05

13000 40246 61060 197.67

14000 44045 66530 225.88

15000 45434 66966 230.51

16000 47814 69787 260.70

17000 50456 72710 278.48

18000 52145 73043 280.76

19000 53849 73437 288.01

20000 55584 73953 289.30

21000 57654 74688 290.37

22000 59274 74991 295.66

23000 61308 75954 296.13

24000 63000 76288 313.13

25000 65538 79404 354.95

26000 69741 89888 439.01

27000 72741 93016 479.78

28000 76148 98065 553.75

29000 79414 104328 573.24

30000 82714 107633 601.33

Figure 9.3: Execution time of confidence computation for existence of trian-

gles in general random graphs

9.2. PROBABILISTIC TPC-H 85

ity distribution over these variables. We perform experiments with TPC-H

scale factor 1 (1GB database size) and evaluate the TPC-H-like queries men-

tioned above. The queries can be found in Appendix C. In addition, we

compare our results with the reported time from [17] in which SPROUT was

only partially integrated into PostgreSQL and storing temporary relations to

the disk was sometimes necessary. The average time shown below is obtained

from ten subsequent, identical executions with a warm cache by running the

query once.

Query Average Time(Seconds)

Current running time Time reported in [17]

1 8.21 120.13

4 40.57 39.52

12 17.1 21.94

15 5.5 3.2

B1 5.37 14.92

B4 31.88 33.02

B6 3.82 6.37

B12 15.91 18.56

B14 4.17 4.86

B15 4.81 5.24

B16 0.87 3.16

B17 3.25 2.43

Figure 9.4: Current running times vs. running times reported in [17]. Boolean

queries are prefixed by B.

86 CHAPTER 9. EXPERIMENTS

Appendix A

Queries in Random Graph

Experiments

create table node (n integer);

insert into node values (1);

insert into node values (2);

insert into node values (3);

insert into node values (4);

......

insert into node values (n-1);

insert into node values (n); /* n is the number of nodes in the graph */

/* Here we specify the probability that an edge is in the graph. */

create table inout (bit integer, p float);

insert into inout values (1, 0.5); /* probability that edge is in the graph */

insert into inout values (0, 0.5); /* probability that edge is missing */

create table total_order as

(

select n1.n as u, n2.n as v

from node n1, node n2

where n1.n < n2.n

);

87

88 APPENDIX A. QUERIES IN RANDOM GRAPH EXPERIMENTS

/* This table represents all subsets of the total order over

node as possible worlds. We use the same probability -- from

inout -- for each edge, but in principle we could just as

well have a different (independent) probability for each edge.

*/

create table to_subset as

(

repair key u,v

in (select * from total_order, inout)

weight by p

);

create table edge0 as (select u,v from to_subset where bit=1);

select conf() as triangle_prob

from edge0 e1, edge0 e2, edge0 e3

where e1.v = e2.u and e2.v = e3.v and e1.u = e3.u

and e1.u < e2.u and e2.u < e3.v;

select aconf(0.05,0.05) as triangle_prob

from edge0 e1, edge0 e2, edge0 e3

where e1.v = e2.u and e2.v = e3.v and e1.u = e3.u

and e1.u < e2.u and e2.u < e3.v;

Appendix B

Queries in General Random

Graph Experiments

drop table data0;

drop table data;

create table data0(u int, v int);

create table data(u int, v int);

/* Copy the data to a relation. */

copy data0

from ’path_of_the_data_file/www.dat’ with delimiter as ’ ’;

/* Since the data represents a directed graph, we need to

insert all tuples again with u and v swapped.

*/

insert into data0

select v, u from data0;

/* This fetches the distinct pairs of (u,v), which represents

all edges of an undirected graph.

*/

89

90APPENDIX B. QUERIES IN GENERAL RANDOMGRAPH EXPERIMENTS

insert into data

select distinct u, v from data0;

drop table edges;

drop table edge0;

create table edges (u integer, v integer, p float4);

/* This fetches all the edges related to the nodes we intend to

keep in the graph.

’1000’ in ’u < 1000 and v < 1000’ is the number of nodes

which will appear in the graph.

’0.01’ in ’random() < 0.01’ is the proportion of certainly

present edges in all edges.

’0.1’ is the upper bound of the probability that a possibly

present edge is in the graph.

You may change the above-mentioned three parameters in the

experiments.

*/

insert into edges

select u, v,

CASE WHEN random() < 0.01 THEN 1.0

ELSE random() * 0.1

END

from data

where u < 1000 and v < 1000 and u < v;

/* The number of edges in the graph */

select count(*) as edge_count from edges;

/* The number of clauses in the confidence computation */

select count(*) as clause_count from

edges e1, edges e2, edges e3

where e1.v = e2.u and e2.v = e3.v and e1.u = e3.u

91

and e1.u < e2.u and e2.u < e3.v;

/* Creation of an uncertain relations representing the graph */

create table edge0 as

(pick tuples from edges independently with probability p);

/* Confidence computation of existence of at least

a triangle in the graph

*/

select aconf(.05,.05) as triangle_prob

from edge0 e1, edge0 e2, edge0 e3

where e1.v = e2.u and e2.v = e3.v and e1.u = e3.u

and e1.u < e2.u and e2.u < e3.v;

92APPENDIX B. QUERIES IN GENERAL RANDOMGRAPH EXPERIMENTS

Appendix C

Probabilistic TPC-H Queries

Query 1:

select

l_returnflag,

l_linestatus,

conf()

from

lineitem

where

l_shipdate <= date ’1998-09-01’

group by

l_returnflag,

l_linestatus;

Query 4:

select

o_orderpriority,

conf()

from

orders,

lineitem

where

93

94 APPENDIX C. PROBABILISTIC TPC-H QUERIES

o_orderdate >= date ’1993-07-01’

and o_orderdate < date ’1993-10-01’

and l_orderkey = o_orderkey

and l_commitdate < l_receiptdate

group by

o_orderpriority;

Query 12:

select

l_shipmode,

conf()

from

orders,

lineitem

where

orders.o_orderkey = lineitem.l_orderkey

and (l_shipmode = ’MAIL’

or l_shipmode = ’SHIP’)

and l_commitdate < l_receiptdate

and l_shipdate < l_commitdate

and l_receiptdate >= ’1992-01-01’

and l_receiptdate < ’1999-01-01’

group by

l_shipmode;

Query 15:

select

s_suppkey,

s_name,

s_address,

s_phone,

conf()

95

from

supplier,

lineitem

where

s_suppkey = l_suppkey

and l_shipdate >= date ’1991-10-10’

and l_shipdate < date ’1992-01-10’

group by

s_suppkey,

s_name,

s_address,

s_phone;

Boolean Version of Query 1:

select

conf()

from

lineitem

where

l_shipdate <= date ’1998-09-01’;

Boolean Version of Query 4:

select

conf()

from

orders,

lineitem

where

o_orderdate >= date ’1993-07-01’

and o_orderdate < date ’1993-10-01’

and l_orderkey = o_orderkey

and l_commitdate < l_receiptdate

96 APPENDIX C. PROBABILISTIC TPC-H QUERIES

group by

o_orderpriority;

Boolean Version of Query 6:

select

conf()

from

lineitem

where

l_shipdate >= ’1994-01-01’

and l_shipdate < ’1995-01-01’

and l_discount >= 0.05

and l_discount <= 0.07

and l_quantity < 24;

Boolean Version of Query 12:

select

conf()

from

orders,

lineitem

where

orders.o_orderkey = lineitem.l_orderkey

and (l_shipmode = ’MAIL’

or l_shipmode = ’SHIP’)

and l_commitdate < l_receiptdate

and l_shipdate < l_commitdate

and l_receiptdate >= ’1992-01-01’

and l_receiptdate < ’1999-01-01’

group by

l_shipmode;

Boolean Version of Query 14:

97

select

conf()

from

lineitem,

part

where

l_partkey = p_partkey

and l_shipdate >= date ’1995-09-01’

and l_shipdate < date ’1995-10-01’;

Boolean Version of Query 15:

select

conf()

from

supplier,

lineitem

where

s_suppkey = l_suppkey

and l_shipdate >= date ’1991-10-10’

and l_shipdate < date ’1992-01-10’;

Boolean Version of Query 16:

select

conf()

from

partsupp,

part

where

p_partkey = ps_partkey

and p_brand <> ’Brand#45’

and p_type like ’MEDIUM POLISHED%’;

Boolean Version of Query 17:

98 APPENDIX C. PROBABILISTIC TPC-H QUERIES

select

conf()

from

lineitem,

part

where

p_partkey = l_partkey

and p_brand = ’Brand#23’

and p_container = ’MED BOX’;

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[2] S. Abiteboul, P. Kanellakis, and G. Grahne. “On the Representation and

Querying of Sets of Possible Worlds”. Theor. Comput. Sci., 78(1):158–

187, 1991.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. “Fast and Simple

Relational Processing of Uncertain Data”. In Proc. ICDE, 2008.

[4] L. Antova, C. Koch, and D. Olteanu. “From Complete to Incomplete

Information and Back”. In Proc. SIGMOD, 2007.

[5] P. Dagum, R. M. Karp, M. Luby, and S. M. Ross. “An Optimal Al-

gorithm for Monte Carlo Estimation”. SIAM J. Comput., 29(5):1484–

1496, 2000.

[6] N. Dalvi and D. Suciu. “Efficient query evaluation on probabilistic

databases”. VLDB Journal, 16(4):523–544, 2007.

[7] M. Davis and H. Putnam. “A Computing Procedure for Quantification

Theory”. Journal of ACM, 7(3):201–215, 1960.

[8] E. Grädel, Y. Gurevich, and C. Hirsch. “The Complexity of Query

Reliability”. In Proc. PODS, pages 227–234, 1998.

[9] T. Imielinski and W. Lipski. “Incomplete information in relational

databases”. Journal of ACM, 31(4):761–791, 1984.

99

100 BIBLIOGRAPHY

[10] R. M. Karp and M. Luby. “Monte-Carlo Algorithms for Enumeration

and Reliability Problems”. In Proc. FOCS, pages 56–64, 1983.

[11] R. M. Karp, M. Luby, and N. Madras. “Monte-Carlo Approximation

Algorithms for Enumeration Problems”. J. Algorithms, 10(3):429–448,

1989.

[12] C. Koch. “A Compositional Query Algebra for Second-Order Logic and

Uncertain Databases”. Technical Report arXiv:0807.4620, 2008.

[13] C. Koch. “Approximating Predicates and Expressive Queries on Prob-

abilistic Databases”. In Proc. PODS, 2008.

[14] C. Koch. “MayBMS: A System for Managing Large Uncertain and

Probabilistic Databases”. In C. Aggarwal, editor, Managing and Mining

Uncertain Data, chapter 6. Springer-Verlag, 2008.

[15] C. Koch and D. Olteanu. “Conditioning Probabilistic Databases”. In

Proc. VLDB, 2008.

[16] D. Olteanu, J. Huang, and C. Koch. “Approximate Confidence Compu-

tation in Probabilistic Databases”. Submitted to ICDE 2010.

[17] D. Olteanu, J. Huang, and C. Koch. “SPROUT: Lazy vs. Eager Query

Plans for Tuple-Independent Probabilistic Databases.”. In Proc. ICDE,

2009.

[18] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

	Introduction
	What is MayBMS?
	Applications
	Acknowledgments

	First Steps
	Installing MayBMS
	Running MayBMS
	Short Instructions

	Probabilistic Databases
	Informal Definition
	Formal Definition
	An Example

	Tutorial
	A Really Simple Example
	Example: Triangles in Random Graphs
	Example: Skills Management
	Data Cleaning

	Formal Foundations
	Probabilistic Databases: Notation
	Query Language Desiderata
	The Algebra
	Representing Probabilistic Data
	Conceptual Evaluation and Rewritings
	Asymptotic Efficiency

	The MayBMS Query and Update Language
	Language Overview
	Language Reference
	repair-key
	pick-tuples
	possible
	Confidence computation and approximate aggregates

	MayBMS Internals
	The MayBMS Codebase
	Experiments
	Random Graphs
	Experiments with Varying Levels of Precision
	Experiments with Different Edge Probabilities
	Experiments with General Random Graphs

	Probabilistic TPC-H

	Queries in Random Graph Experiments
	Queries in General Random Graph Experiments
	Probabilistic TPC-H Queries

